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Outline

� Non-negative matrix factorization (NMF)

Examples of applications
– DNA microarray analysis

– Monaural audio separation

� Gaussian processes (GP)

� NMF with GP-priors

Example of application
– Chemical shift brain imaging
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Non-negative matrix factorization

� Non-negative bi-linear decomposition

� In matrix notation
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Why non-negativity?

� Many signals are non-negative by nature
– Pixel intensities

– Amplitude spectra

– Occurrence counts

– Discrete probabilities

– etc.

� Non-subtractive model
– No terms cancel out

– Parts-based: The whole is modeled as a sum of parts
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NMF, PCA, and VQ
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Over-complete decomposition
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DNA microarray analysis

� DNA microarray 
technology enables parallel 
analysis of thousands of 
genes

� Data can be represented 
in non-negative matrix
e.g. gene × experiment
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Two types of leukemia
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Monaural audio separation

Audio 
Separation

� Problem: Separate audio sources using only one-
microphone recording of mixture
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Amplitude spectrogram

� Audio represented as a non-negative matrix
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Audio separation with NMF

1. Learn a basis for each source

2. Compute activation for mixture

3. Reconstruct each source separately
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Subspace illustration

Training data

Basis vectors

Observed 
mixture

Mappings onto 
subspaces
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Audio demonstration
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Computing NMF

� Minimize divergence between XXXX and DHDHDHDH, 
possibly plus some regularization

� Constrained minimization problem: A variety of 
algorithms for different divergence measures and 
regularizations

� Choice of divergence measure corresponds to 
assumptions about the data/noise/factor distribution
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Maximum likelihood NMF

Example: Gaussian i.i.d. noise

� Likelihood function

� Negative log-likelihood (serves as divergence)
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Maximum a posteriori NMF

� Posterior distribution

� Negative log posterior

Likelihood

(divergence)

Prior

(regularization)
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Bayesian NMF

� Posterior distribution

� In general, integrals over the posterior are 
intractable � approximate, e.g., using MCMC.
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Probabilistic model of factors

� Standard NMF

– Factors constrained to be non-negative

– No other assumptions about the factors

� Prior distribution over factors

– Prior distribution captures non-negativity as well as other 
properties, such as sparseness, smoothness, symmetries, etc.
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Which prior distributions to use?

� Distribution over non-negative reals
– Rectified Gaussian: L2 norm regularization

– One-sided exponential: L1 norm regularization

� Gaussian process mapped to the non-negative reals
– Flexible, principled, and practical approach

– Sparseness, smoothness, symmetries, etc.
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Gaussian Processes

� A stochastic process which generates samples, xi , 
such that any linear combination of xi is Gaussian

� Characterized by its mean and covariance function

� Defines a distribution over functions
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Example of Gaussian process

� Mean function

� Covariance function
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NMF with GP priors

� G
D
and G

H
are Gaussian processes

� Link functions
– Strictly increasing

– Maps the reals to the non-negative reals -2 -1 0 1 2
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Link Function

� Map marginal distribution of Gaussian process to 
desired marginal distribution

� Example: Gaussian-to-Exponential
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Change of Variable

� New variables δδδδ and ηηηη

– CCCC is Cholesky decomposition of covariance matrix

– Variables δδδδ and ηηηη are i.i.d. Gaussian

�MAP estimate: p(δδδδ, ηηηη ||||XXXX)
– More robust and less local minima

– Unconstrained optimization (use e.g. conj. grad.)
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Illustration of NMF with GP priors

� Full matrix data
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Illustration of NMF with GP priors

� Full matrix data

� Missing values
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Illustration of NMF with GP priors

� Full matrix data

� Missing values

� General bi-linear form
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Toy Example
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Toy Example
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Chemical Shift Brain Imaging

� Data: 369 point chemical shift spectra measured at 
512 positions (8×8×8 grid) in human skull.

� Task: Distinguish between brain and muscle tissue

� Prior for spectra: 
Smooth, exponentially 
distributed.

� Prior for activations in skull: 
Smooth in 3D, exponentially distributed, 
left-to-right symmetric.
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Chemical Shift Brain Imaging
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Conclusions

� NMF
– General and versatile method

– Can be used to analyze a variety of problems including

� DNA microarray analysis

� Audio signal separation

� NMF with GP-priors
– Extends the NMF framework by adding prior information

– Can improve the quality of non-negative factorizations
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Future work

� Full Bayesian treatment of the model (MCMC)

� Learn parameters of kernel function

� Learn link functions from data

� Learn number of components (nonparametric Bayes)
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