

Non-negative matrix factorization with Gaussian process priors

Mikkel N. Schmidt Technical University of Denmark

Outline

- Non-negative matrix factorization (NMF) Examples of applications
 - DNA microarray analysis
 - Monaural audio separation
- Gaussian processes (GP)
- **NMF** with GP-priors
 - **Example of application**
 - Chemical shift brain imaging

DTU

 \sim

Why non-negativity?

• Many signals are non-negative by nature

- Pixel intensities
- Amplitude spectra
- Occurrence counts
- Discrete probabilities
- etc.
- Non-subtractive model
 - No terms cancel out
 - Parts-based: The whole is modeled as a sum of parts

DTU

÷2-

DNA microarray analysis

- DNA microarray technology enables parallel analysis of thousands of genes
 - Data can be represented in non-negative matrix e.g. gene × experiment

DTU

<mark>.</mark> ->

|->

 \cdot

- 8-

Choice of divergence measure corresponds to assumptions about the data/noise/factor distribution Maximum likelihood NMF
Example: Gaussian i.i.d. noise
I Likelihood function

$$p(\boldsymbol{X}|\boldsymbol{D},\boldsymbol{H}) = \prod_{i,j} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(\boldsymbol{X}_{i,j} - [\boldsymbol{D}\boldsymbol{H}]_{i,j})^2}{2\sigma^2}\right)$$
Negative log-likelihood (serves as divergence)

$$-\log p(\boldsymbol{X}|\boldsymbol{D},\boldsymbol{H}) \propto \sum_{i,j} (\boldsymbol{X}_{i,j} - [\boldsymbol{D}\boldsymbol{H}]_{i,j})^2$$

 \odot

DTU

3

۰ŷe

- 8-

Probabilistic model of factors

Standard NMF

$oldsymbol{X} pprox oldsymbol{DH}$ s.t. $oldsymbol{D}, oldsymbol{H} \geq 0$

- Factors constrained to be non-negative
- No other assumptions about the factors

Prior distribution over factors

$p(\boldsymbol{D},\boldsymbol{H})$

- Prior distribution captures non-negativity as well as other properties, such as sparseness, smoothness, symmetries, etc.

Which prior distributions to use?

Distribution over non-negative reals

- Rectified Gaussian: L_2 norm regularization
- One-sided exponential: L_1 norm regularization

Gaussian process mapped to the non-negative reals

- Flexible, principled, and practical approach
- Sparseness, smoothness, symmetries, etc.

Gaussian Processes

- A stochastic process which generates samples, x_i , such that any linear combination of x_i is Gaussian
 - Characterized by its mean and covariance function
 - Defines a distribution over functions

•>

۰ŷe

Link Function

Map marginal distribution of Gaussian process to desired marginal distribution

$$\boldsymbol{H} = f_H(\boldsymbol{G}_{\boldsymbol{H}}) = P_H^{-1}(P_{G_H}(\boldsymbol{G}_{\boldsymbol{H}}))$$

Example: Gaussian-to-Exponential

$$f_H(G_H) = -\frac{1}{\lambda} \log \left(\frac{1}{2} - \frac{1}{2} \Phi \left(\frac{G_H}{\sqrt{2}\sigma_i} \right) \right)$$

-8-

DTU

·>

DTU

DTU

 \cdot

- 8-

Informatics and Mathematical Modelling / Intelligent Signal Processing

·}-

DTU

Conclusions

NMF

- General and versatile method
- Can be used to analyze a variety of problems including
 - DNA microarray analysis
 - Audio signal separation

NMF with GP-priors

- Extends the NMF framework by adding prior information
- Can improve the quality of non-negative factorizations

Future work

- Full Bayesian treatment of the model (MCMC)
- Learn parameters of kernel function
- Learn link functions from data
- Learn number of components (nonparametric Bayes)

References

Non-negative Matrix Factorization

- D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788–791, 1999.
- P. Paatero and U. Tapper. Positive matrix factorization: A nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics, 5:111–126, 1994.
- Michael W. Berry, Murray Browne, Amy N. Langville, V. Paul Pauca, and Robert J. Plemmons. Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 2006.

DNA Microarray Analysis

Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, and Jill P. Mesirov. Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences (PNAS), 101(12):4164-4169, Mar 2004.

References

Speech Separation with NMF

- Mikkel N. Schmidt and Rasmus K. Olsson, Linear Regression on Sparse Features for Single-Channel Speech Separation. Applications of Signal Processing to Audio and Acoustics, IEEE Workshop on, 2007.
- Mikkel N. Schmidt and Rasmus K. Olsson, Single-Channel Speech Separation using Sparse Non-Negative Matrix Factorization. Spoken Language Processing, ISCA International Conference on, 2006.

Gaussian Processes

Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.

NMF with GP-priors

Mikkel N. Schmidt and Hans Laurberg, Non-negative matrix factorization with Gaussian process priors. Computational Intelligence and Neuroscience, 2008.

