Infinite non-negative matrix factorization

Mikkel N. Schmidt and Morten Mørup
Technical University of Denmark

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Non-negative matrix factorization (NMF)

- Matrix factorization
- Algorithms in multivariate analysis / linear algebra
- Matrix is factored into the product of two matrices
- Assumptions about the factors lead to different algorithms
- PCA, FA, ICA, NMF, VQ, etc.

$$
\underset{I \times J}{\boldsymbol{V}}=\underset{I \times D}{\boldsymbol{W}} \underset{D \times J}{\boldsymbol{H}}+\underset{I \times J}{\boldsymbol{E}}
$$

- NMF: Factors constrained to be non-negative

$$
\text { s.t. } \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
$$

- Problem: Efficient model order selection

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization

 Non-negative matrix factorization (NMF)$$
\underset{I \times J}{\boldsymbol{V}}=\underset{I \times D}{\boldsymbol{W}} \underset{D \times J}{\boldsymbol{H}}+\underset{I \times J}{\boldsymbol{E}}
$$

Principal component analysis
Non-negative matrix factorization

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Non-negative matrix factorization (NMF)

$$
\underset{I \times J}{\boldsymbol{V}}=\underset{I \times D}{\boldsymbol{W}} \underset{D \times J}{\boldsymbol{H}}+\underset{I \times J}{\boldsymbol{E}} \quad \text { s.t. } \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
$$

Applications of NMF

- Document clustering and topic discovery
- Word occurence counts
- Learning image basis functions
- Pixel intensities
- Unmixing spectral data (hyperspectral imaging, chemometrics, etc.)
- Spectral amplitudes

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Bayesian NMF

$$
\underset{I \times J}{\boldsymbol{V}}=\underset{I \times D}{\boldsymbol{W}} \underset{D \times J}{\boldsymbol{H}}+\underset{I \times J}{\boldsymbol{E}} \quad \text { s.t. } \boldsymbol{W}, \boldsymbol{H} \geq \mathbf{0}
$$

- Principled framework
- Data and parameters modeled as stochastic variables
- Models uncertainty about the factors
- All assumptions are made explicit
- Many extensions are special cases
- Gives predictions with error-bars (credible intervals)
- Model selection is integrated in the framework

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Choosing the number of factors

Resampling

- Crossvalidation, Bootstrapping, etc.

Asymptotic theory

- Bayesian information criterion (BIC), etc.

Bayesian model comparison

- Chib's method, Themodynamic integration, etc.

Formulating a super-model

- A comprehensive model that comprises factorizations of any order
- Model selection is integrated in the inference procedure

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Related infinite matrix factorization methods

- Based on the Indian buffet process
(Griffiths and Ghahramani, 2006)
- Infinite binary matrix factorization (Meeds et al. 2007)
- Infinite sparse coding, Infinite independent component analysis (Knowles and Ghahramani, 2007)

$$
\boldsymbol{V}=\boldsymbol{A}(\boldsymbol{S} \odot \boldsymbol{Z})+\boldsymbol{E}
$$

- Our approach
- Not Indian buffet process
- Reversible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995)

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Infinite NMF

$$
\frac{\text { Posterior }}{p(\boldsymbol{W}, \boldsymbol{H}, D \mid \boldsymbol{V})} \propto \frac{\text { Likelihood }}{p(\boldsymbol{V} \mid \boldsymbol{W}, \boldsymbol{H}, D)} \frac{\text { Priors }}{p(\boldsymbol{W} \mid D) p(\boldsymbol{H} \mid D) p(D)}
$$

Infinite non-negative matrix factorization

 Approximate inference procedures

Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Gibbs / Metropolis-Hastings sampling

- Sampling factorizing matrices etc.
- Standard Gibbs sampling

$$
\begin{aligned}
\boldsymbol{W} & \sim p(\boldsymbol{W} \mid \boldsymbol{H}, D, \boldsymbol{V}) \\
\boldsymbol{H} & \sim p(\boldsymbol{H} \mid \boldsymbol{W}, D, \boldsymbol{V})
\end{aligned}
$$

- Sampling the number of components
- Requires joint update of factorizing matrices
- Reversible jump MCMC (Metropolis-Hastings) with suitable proposal

$$
\boldsymbol{W}^{*}, \boldsymbol{H}^{*}, D^{*} \sim q\left(\boldsymbol{W}^{*}, \boldsymbol{H}^{*}, D^{*} \mid \boldsymbol{W}, \boldsymbol{H}, D\right)
$$

DTU Informatics

Infinite non-negative matrix factorization

 Reversible jump moves

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Proposal based on launch state

- Initialization: Draw from prior
- Refinement: Restricted Gibbs sampling
- Proposal: One final restricted Gibbs sweep

Details and expression for acceptance rate given in the paper

DTU Informatics
Department of Informatics and Mathematical Modeling

Infinite non-negative matrix factorization Summary and discussion

- Bayesian NMF with an a priori unbounded number of factors
- Learn the number of factors from data
- Model order selection integrated in inference
- Efficient sampling scheme for cross-dimensional jumps
- Based on reversible jump MCMC
- Efficient proposals through high probability launch states
- Demonstrated on real and synthetic data
- Reliably extract the correct model order
- Lower comptational complexity than competing approaches

DTU Informatics
Department of Informatics and Mathematical Modeling

