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ABSTRACT

Peak detection and localization in a noisy signal with an un-
known baseline is a fundamental task in signal processing
applications such as spectroscopy. A current trend in signal
processing is to reformulate traditional processing pipelines
as (deep) neural networks that can be trained end-to-end. A
trainable algorithm for baseline removal and peak localiza-
tion can serve as an important module in such a processing
pipeline. In practical applications, one of the most successful
approaches to joint baseline suppression and peak localiza-
tion is based on the continuous wavelet transform: We re-
formulate this as a convolutional neural network (CNN) fol-
lowed by a non-linear readout layer. On a synthetic bench-
mark we demonstrate that with sufficient training data, the
CNN approach consistently outperforms the optimized con-
tinuous wavelet method by means of adapting to the spectral
peak shape, noise level, and characteristics of the baseline.
The CNN approach to peak localization shows great promise,
as it can more efficiently leverage data to outperform the cur-
rent state of the art, and can readily be extended and incorpo-
rated as a module in a larger neural network architecture.

Index Terms— Peak detection, Peak localization, Wavelet,
Spectroscopy, Convolution Neural Network

1. INTRODUCTION

Peak detection is a vital component in a wide range of ap-
plications, and serves as a component in applications such as
molecule identification in spectroscopy [1, 2], chromatogra-
phy [3], beat and onset detection in audio [4], and event de-
tection in social media data [S]. In spectroscopy, the charac-
teristic peak locations comprise a fingerprint of a measured
analyte [1]. In practice, a measured spectrum also contains an
unknown smooth baseline component, and to reliably detect
the peak locations in a measured spectrum, baseline correc-
tion (also called background removal) is often carried out.

A traditional procedure for baseline removal and peak lo-
calization typically consists of three steps [2]; 1) smoothing,
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2) baseline correction and 3) peak picking. Numerous algo-
rithms for these steps have been proposed in the literature:
Smoothing can e.g. be carried out using splines, Savitzky-
Golay filters [6], partial least squares [7], or undecimated
wavelet transform [8]. Baseline estimation can also be car-
ried out in multiple ways: The signal can be fitted using a
sufficiently smooth model, such as a polynomial of low de-
gree or a neural network with smooth basis functions [9], us-
ing a non-symmetric error function, so it tends to fit the base-
line rather than the signal peaks. Alternatively, nonparametric
methods such as monotone minimum, local regression [10],
or moving average minimum/quantile filtering have been used
to estimate the baseline. Finally, the estimated baseline is sub-
tracted from the signal, and the peaks are located by a suitable
peak picking procedure. Algorithms that jointly estimate the
baseline and peak locations have also received attention re-
cently [11, 3, 12], and have been shown to avoid some of the
problems associated with the traditional two-step procedure.

As an alternative to the outlined estimation procedures,
peak localization methods based on continuous wavelet trans-
forms can automatically suppress the baseline [13]. In a com-
prehensive survey and experimental comparison of peak de-
tection methods for mass spectrometry, Yang et al. conclude
that “the continuous wavelet based algorithm provides the
best average performance” [2].

In a typical signal processing pipeline, where several
algorithms are applied to a signal in succession, errors can
accumulate and it can be unclear how to tune the different
algorithms to perform best in combination. A current trend
in signal processing is to reformulate existing processing
pipelines as neural network architectures, such that the com-
plete pipeline can be trained end-to-end in a supervised man-
ner. In this paper we demonstrate how the continuous wavelet
based peak localization procedure with baseline suppression
can be designed as a trainable neural network, allowing it to
serve as a module in a larger processing network.

In section 2 we delimit the problem and review the con-
tinuous wavelet approach to peak localization. Next, we re-
formulate this approach as a trainable neural network, and
introduce two benchmark methods. In section 3 we evaluate
the proposed method in a large cross validated synthetic data
study, and show that the proposed method consistently out-
performs the continuous wavelet based approach, which we



consider the current state of the art for an unsupervised algo-
rithm. Finally, we discuss the results and possible extensions,
and conclude in section 4.

2. METHOD

In this paper, we address the situation where a measured spec-
trum, s(f), consists of the summation of an unknown smooth
baseline signal, b( f), and a single spectral peak with fixed but
unknown lineshape, v(f — fo), situated at an unknown loca-
tion, fo, where f is the spectral/frequency variable. The spec-
trum is contaminated by i.i.d. Gaussian noise, e( f), scaled by
a factor s to yield a specific peak signal-to-noise ratio,

s(f) =0(f) +v(f = fo) +s-e(f). ¢))
Given such a signal, the goal is to estimate the location of
the peak. We assume a training set with multiple of such sig-
nals, each with different baselines, peak locations, and noise,
is available to train the algorithm, which is evaluated by the
mean absolute error (MAE) on a separate test set.

2.1. Continuous wavelet peak localization

In continuous wavelet peak localization, the measured spec-
trum is convolved by a suitable wavelet function, and the peak
location is estimated as the frequency at which the convo-
lution has maximum magnitude. When the lineshape of the
peak can vary, a basis with multiple wavelets is beneficial,
but in the fixed lineshape setting a single wavelet will suffice.

When the wavelet is a symmetric zero-mean function,
such as the mexican hat (aka. Ricker or Marr) wavelet,
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the convolution suppresses a locally smooth baseline. If the
baseline can locally be modelled as a constant plus an odd
signal, b(f) = d+g(f) where g(f) = g(—f), the convolution
of the baseline with the wavelet is zero,

(b 0)(f) = / bl — PAf =0, @)

— 00
i.e. a locally smooth baseline does not influence the result. In
practice, when the signal is measured in discretized frequency
bins, the convolution is a discrete sum. Defining the discrete
frequencies as f = 1,2, ..., F, and assuming the convolution
kernel is defined on f = 1,2,..., W and centered at (W +
1)/2, we can write the convolution as
w
clf] = slf + jlvalfl, “
f=1
where terms indexed by square brackets are discrete se-
quences. The convolution is devoid of issues with boundary
conditions for j = 0,1,...,F — W, and to simplify the
discussion, we restrict the convolution to this range. Finally,
the argument j* that maximizes c[j] is chosen, and the peak
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Fig. 1: Convolutional neural network architecture. Dimen-
sions of input, output, intermediate data representations, and
parameters used in experiments are indicated in parentheses.

location is estimated as f = j* + (W + 1)/2. To yield
a sufficient frequency resolution beyond the given discrete
resolution, the signal can be up-sampled before the convolu-
tion. The parameter(s) of the wavelet must be chosen in an
appropriate manner. In our implementation we upsample by
a factor of 100; use the mexican hat wavelet, and choose the
wavelet width a selected by cross validation.

2.2. Formulation as a convolution neural network

We now move on to formulate the peak localization proce-
dure as a trainable neural network. The first step is, as in the
wavelet approach, a 1-dimensional convolution,
w
Xl =Y slf +4lelf)l, jel2,....F-=W. (5
f=1
Here, s[f] is the measured spectrum and ¢[f] are trainable
kernel parameters. Rather than determine the location of the
maximum of the convolution, we scale x[j] by a trainable
parameter c and pass it through a soft-max layer,
ol — el Xl
T F-W :

2 k=0 exp(c- x[k])
Due to the soft-max operator, the sequence 7[j] is non-
negative and sums to one, and can thus be thought of as a
probability distribution over the discrete frequency bins that

represents the possible locations of the peak. We finally have
a linear readout layer,

(6)
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If the weights in the readout layer are chosen as w[j] = j +
(W +1)/2, this layer will simply compute the expected value
of the peak location according to the distribution 7 [4]. In prac-
tice, we let w]j] be trainable parameters of the model.

The neural network architecture is illustrated in Fig. 1,
which also shows the dimensionalities of all quantities used
in the subsequent experiments.



2.3. Oracle benchmarks

We include for comparison two “oracle” benchmark peak lo-
calization procedures, in both of which the true baseline is
removed from the signal.

Oracle peak picking: Here the peak localization is simply
estimated by picking the frequency with the highest amplitude
in the baseline corrected signal. This benchmark is included
to demonstrate the performance of a procedure which does
not model the peak lineshape.

Oracle convolution: In the case when there is no baseline
and additive Gaussian noise, the least squares optimal proce-
dure for estimating the peak location is to convolve the spec-
trum by the true peak lineshape and pick the maximum. In our
implementation of this benchmark method, we up-sampled
the spectrum by a factor of 100 to yield a frequency resolu-
tion beyond the discretization. This benchmark is included as
an estimate of the best attainable performance.

3. EXPERIMENTAL EVALUATION

To demonstrate the performance of the proposed method, we
carried out a cross validation study on a synthetic data set at
different signal-to-noise ratios: We compared convolutional
neural network (CNN) method with the continuous wavelet
approach (using the mexican hat wavelet) as well as the two
oracle baselines. In all experiments we used F' = 200 fre-
quency bins, and the width of the wavelets and convolution
kernels were set to W = 40 to readily accommodate the width
of the simulated peak lineshape.

3.1. Synthetic data generation

We generated a set of simulated spectra according to Eq. (1)
with parameters chosen to mimic a spectroscopy scenario
with a strong baseline and low signal-to-noise ratio.
Baseline: We generated a smoothly varying baseline by first
generating a unit variance Gaussian random walk. The ran-
dom walk was then filtered forward and backwards using a
second order Butterworth lowpass filter with a normalized
cutoff frequency of 0.01.

Peak: In each simulated spectrum we added a single Voigt-
shaped peak,

1 f+iy
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where w is the Faddeeva function and ¢ is the imaginary unit.
The peak shape parameters were fixed at ¢ = v = 1 yield-
ing a full width at half maximum of approximately 3.6. The
peak was rescaled to have unit maximum magnitude. The
peak locations were chosen uniformly at random in the inter-
val W < f < F — W, so that no peaks occurred close to the
boundaries of the spectra.
Noise: Independent Gaussian noise was added to each fre-
quency bin. The noise was scaled by a factor s to achieve a
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Fig. 2: Mean absolute error of peak localization for the con-
tinuous wavelet method for varying width of the mexican hat

wavelet at different noise levels. The minima (indicated by
dots) are used in the subsequent experiments.

desired peak signal-to-noise ratio (PSNR), computed as
PSNR = 10log;,(s~2). ©)
In our experiments we evaluated PSNR values from 0 dB to
18 dB in steps of 3 dB.
Crossvalidation: We generated a training, validation, and
test set, each consisting of N = 10000 spectra. The train-
ing set was used to fit parameters in the neural network; the
validation set was used for model selection for the wavelet
methods; and the test set was used for final evaluation and
comparison of the methods. Examples of a simulated spec-
trum at different PSNR are given in Fig. 4a.

3.2. Optimal wavelet width

In the continuous wavelet approach, to choose the optimal
wavelet width, a, for the mexican hat wavelet, we computed
the mean absolute error on the validation set for each PSNR
for a range of wavelet widths ranging from 1 to 8.

Result: Fig. 2 shows the result of the analysis as well as the
optimal wavelet width for each PSNR. For each given PSNR,
the continuous wavelet method is not strongly sensitive to the
choice of the width parameter, as none of the curves have a
sharp minimum; however, the optimal wavelet width depends
strongly on the PSNR, where low PSNR calls for a relatively
wide wavelet, whereas high PSNR calls for a more narrow
wavelet.

3.3. Performance evaluation

We fitted the parameters of the CNN on the training set using
the L-BFGS optimization algorithm with the absolute error of
the peak location as cost function,
N ~
cost(¢,c,w) = > _ | fi — fil. (10)
i=1
where ¢ runs over training examples. The parameters were
initialized as follows: The convolution kernel ¢[f] was set to
a mexican hat wavelet with optimal width chosen as for the
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Fig. 3: Mean absolute error of peak localization estimators at

different noise levels. The two benchmark “oracle” estimators
were run with the ground truth baseline subtracted.

continuous wavelet method, the scale was set to ¢ = 10, and
the frequency weights were set to w[j] = j + (W +1)/2.
Result: Fig. 3 shows the mean absolute error on the test set.
The CNN consistently outperforms the wavelet approach ex-
cept at the highest PSNR of 18 dB, where the performance
of both methods coincide with the oracle convolution. At the
lowest PSNR of 0 dB, the CNN performs better than the or-
acle convolution: We believe this happens because the ora-
cle convolution is optimal in terms of fitting the signal in the
least squares sense, but not optimal in estimating the peak lo-
cation in terms of absolute error. Fig. 4a shows the estimated
convolution kernel as well as the optimal width mexican hat
wavelet used both in the continuous wavelet method and as
initialization in the CNN. Similar to the optimal mexican hat
wavelet, the learned kernel function appears slightly wider
for low PSNR and narrower for high PSNR. For high PSNR
values (15-18 dB) the estimated kernel is smooth and sym-
metric, whereas for lower PSNR the estimated kernel appears
more “noisy”’.

3.4. Learning curve

To assess how much data is needed to train the CNN method,
we computed learning curves for the method by training on
different number of spectra ranging from 100 to 10 000.
Result: Fig. 4b shows how the performance of the CNN
method improves with increasing training set size in com-
parison with the wavelet approach. For low PSNR, 0-9 dB,
the CNN outperforms the wavelet method even with only 100
training examples. At high PSNR, the CNN needs more train-
ing examples to outperform the wavelet method: We believe
that a part of the explanation is that the CNN suffers some-
what from overfitting the training data at high PSNR, and this
could possibly be remedied by suitable regularization.

4. CONCLUSION AND DISCUSSION

In this paper we have proposed a convolutive neural network
approach to peak localization and baseline suppression. We
have demonstrated that the proposed approach can leverage
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Fig. 4: (a) Examples of a spectrum at different PSNR levels,
optimal mexican hat wavelet and the learned CNN kernel. (b)
Learning curves for the convolutional neural network, show-
ing the mean absolute error on the test set for different training
set sizes, averaged over 5 re-runs. Dottted lines show results
for the continuous wavelet method for comparison.

supervised training data to yield superior performance in
comparison with the continuous wavelet approach, which we
consider the state of the art unsupervised method.

To make the proposed method practically useful, several
possible extensions should be considered. In the current for-
mulation it was assumed that the spectral peak shape is con-
stant. In practice, this might not be a valid assumption, and
to handle this we envision extending the CNN by combin-
ing results from multiple learned kernel functions, which can
model the span of possible lineshapes. Furthermore, it was as-
sumed that the spectra always contained a single peak at fixed
PSNR. In most practical applications, a more general assump-
tion would be that there is an unknown number of peaks, and
that the number of peaks should be inferred from the data.
We envision that one way to handle this would be to include
multiple peak location estimators and endow them with an
attention mechanism so that each estimator will focus on a
sub-range of frequencies.

With these future research directions in mind, we envision
that the proposed CNN architecture can be of great value, in-
corporated in a larger spectral signal processing pipeline that
is trained end-to-end.
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