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Abstract

We present a general method for including prior knowledge in a non-
negative matrix factorization (NMF), based on Gaussian process priors.
We assume, that the non-negative factors in the NMF are linked by a
strictly increasing function to an underlying Gaussian process, specified
by its covariance function. This allows us to find NMF decompositions,
that agree with our prior knowledge of the distribution of the factors, such
as sparseness, smoothness, and symmetries. The method is demonstrated
with an example from chemical shift brain imaging.

1 Introduction

Non-negative matrix factorization (NMF) [1, 2] is a recent method for factorizing
a matrix as the product of two matrices, in which all elements are non-negative.
NMF has found widespread application in many different areas including pattern
recognition [3], clustering [4], dimensionality reduction [5], and spectral analysis
[6, 7]. Many physical signals, such as pixel intensities, amplitude spectra, and
occurence counts, are naturally represented by non-negative numbers. In the
analysis of mixtures of such data, non-negativity of the individual components
is a reasonable constraint. Recently, a very simple algorithm [8] for computing
the NMF was introduced. This has initiated much research aimed at developing
more robust and efficient algorithms.

Efforts have been made to enhance the quality of the NMF by adding fur-
ther constraints to the decomposition, such as sparsity [9], spatial localization
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[10, 11], and smoothness [11, 12], or by extending the model to be convolu-
tive [13, 14]. Many extended NMF methods are derived by adding appropriate
constraints and penalty terms to a cost function. Alternatively, NMF meth-
ods can be derived in a probabilistic setting, based on the distribution of the
data [15, 16, 6, 17]. These approaches have the advantage that the underlying
assumptions in the model are made explicit.

In this paper we present a general method for using prior knowledge to
improve the quality of the solutions in NMF. The method is derived in a prob-
abilistic setting, and it is based on defining prior probability distributions of
the factors in the NMF model in a Gaussian process framework. We assume
that the non-negative factors in the NMF are linked by a strictly increasing
function to an underlying Gaussian process, specified by its covariance func-
tion. By specifying the covariance of the underlying process, we can compute
NMF decompositions that agree with our prior knowledge of the factors, such as
sparseness, smoothness, and symmetries. We refer to the proposed method as
non-negative matrix factorization with Gaussian process priors, or GPP-NMF
for short.

2 NMF with Gaussian Process Priors

In the following we derive a method for including prior information in an NMF
decomposition by assuming Gaussian process priors (for a general introduction
to Gaussian processes, see e.g. Rasmussen and Williams [18].) In our approach,
the Gaussian process priors are linked to the non-negative factors in the NMF
by a suitable link function. To set up the notation, we start by deriving the
standard NMF method as a maximum likelihood (ML) estimator and then move
on to the maximum a posteriori (MAP) estimator. Then we discuss Gaussian
process priors and introduce a change of variable that gives better optimization
properties. Finally, we discuss the selection of the link function.

2.1 Maximum Likelihood NMF

The NMF problem can be stated as

X = DH + N , (1)

where X ∈ R
K×L is a data matrix that is factorized as the product of two

element-wise non-negative matrices, D ∈ R
K×M
+ and H ∈ R

M×L
+ , where R+

denotes the non-negative reals. The matrix N ∈ R
K×L is the residual noise.

There exists a number of different algorithms [8, 19, 20, 21, 16, 15, 17]
for computing this factorization, some of which can be viewed as maximum
likelihood methods under certain assumptions about the distribution of the data.
For example, least squares NMF corresponds to i.i.d. Gaussian noise [17] and
Kullback-Leibler NMF corresponds to a Poisson process [6].

The ML estimate of D and H is given by

{DML, HML} = arg min
D,H≥0

LX|D,H(D, H), (2)

where LX|D,H(D, H) is the negative log likelihood of the factors.
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Example 1 (Least squares NMF). An example of a maximum likelihood
NMF is the least squares estimate. If the noise is i.i.d. Gaussian with variance
σ2

N , the likelihood of the factors D and H can be written as

pLS
X|D,H(X |D, H) =

1
(√

2πσN

)KL
exp

(

−||X − DH||2F
2σ2

N

)

. (3)

The negative log likelihood, which serves as a cost function for optimization, is
then

LLS
X|D,H(D, H) ∝ 1

2σ2
N

||X − DH ||2F , (4)

where we use the proportionality symbol to denote equality subject to an additive
constant. To compute a maximum likelihood estimate of D and H, the gradient
of the negative log likelihood is useful

∇HLLS
X|D,H(D, H) =

1

σ2
N

D⊤(DH − X), (5)

and the gradient with respect to D, which is easy to derive, is similar because
of the symmetry of the NMF problem.

The ML estimate can be computed by multiplicative update rules based on
the gradient [8], projected gradient descent [19], alternating least squares [20],
Newton-type methods [21], or any other appropriate constrained optimization
method.

2.2 Maximum a Posteriori NMF

In this paper, we propose a method to build prior knowledge into the solution of
the NMF problem. We choose a prior distribution pD,H(D, H) over the factors
in the model, that captures our prior beliefs and uncertainties of the solution
we seek. We then compute the maximum a posteriori (MAP) estimate of the
factors. Using Bayes rule, the posterior is given by

pD,H|X(D, H|X) =
pX|D,H(X|D, H)pD,H(D, H)

pX(X)
. (6)

Since the numerator is constant, the negative log posterior is the sum of a
likelihood term that penalizes model misfit, and a prior term that penalizes
solutions that are unlikely under the prior

LD,H|X(D, H) ∝ LX|D,H(D, H) + LD,H(D, H). (7)

The MAP estimate of D and H is

{DMAP, HMAP} = arg min
D,H≥0

LD,H|X(D, H), (8)

and it can again be computed using any appropriate optimization algorithm.

Example 2 (Non-negative sparse coding). An example of a MAP NMF
is non-negative sparse coding (NNSC) [9, 22], where the prior on H is i.i.d.
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exponential, and the prior on D is flat with each column constrained to have
unit norm

pNNSC
D,H (D, H) =

∏

i,j

λ exp (−λHi,j) , ||Dk|| = 1 ∀k, (9)

where ||Dk|| is the Euclidean norm of the k’th column of D. This corresponds
to the following penalty term in the cost function

LNNSC
D,H (D, H) ∝ λ

∑

i,j

Hi,j . (10)

The gradient of the negative log prior with respect to H is then

∇HLNNSC
D,H = λ, (11)

and the gradient with respect to D is zero, with the further normalization con-
straint given in Equation (9).

2.3 Gaussian Process Priors

In the following, we derive the MAP estimate under the assumption that the
non-negative matrices D and H are independently determined by a Gaussian
process [18] connected by a link function. The Gaussian process framework
provides a principled and practical approach to the specification of the prior
probability distribution of the factors in the NMF model. The prior is specified
in terms of two functions: i) a covariance function that describes corellations in
the factors and ii) a link function, that transforms the Gaussian process prior
into a desired distribution over the non-negative reals.

We assume that D and H are independent, so that we may write

LD,H(D, H) = LD(D) + LH(H). (12)

In the following, we consider only the prior for H, since the treatment of D is
equivalent due to the symmetry of the NMF problem. We assume that there
is an underlying variable vector, h ∈ R

LM , which is zero mean multivariate
Gaussian with covariance matrix Σh

ph(h) =
(

2π|Σh|2
)− 1

2
NL

exp

(

−1

2
h⊤

Σ
−1
h h

)

, (13)

and linked to H via a link function, fh: R+ → R

h = fh

(

vec (H)
)

, (14)

which operates element-wise on its input. The vec (·) function in the expression
stacks its matrix operand column by column. The link function should be
strictly increasing, which ensures that the inverse exists. Later, we will further
assume that the derivatives of fh and f−1

h exist. Under these assumptions, the
prior over H is given by (using the change of variables theorem)

pH(H) = ph

(

fh

(

vec (H)
)

) ∣

∣

∣
J

(

fh

(

vec (H)
)

)∣

∣

∣
(15)

∝ exp

(

−1

2
fh

(

vec (H)
)⊤

Σ
−1

h fh

(

vec (H)
)

)

∏

i

∣

∣f ′
h

(

vec (H)
)
∣

∣

i
, (16)
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where J (·) denotes the Jacobian determinant and f ′
h is the derivative of the

link function. The negative log prior is then

LH(H) ∝ 1

2
fh

(

vec (H)
)⊤

Σ
−1
h fh

(

vec (H)
)

−
∑

i

log
∣

∣f ′
h

(

vec (H)
)∣

∣

i
. (17)

This expression can be combined with an appropriate likelihood function, such
as the least squares likelihood in Equation (4), and be optimized to yield the
MAP solution; however, in our experiments, we found that a more simple and
robust algorithm can be obtained by making a change of variable as explained
next.

2.4 Change of Optimization Variable

Instead of optimizing over the non-negative factors D and H , we introduce the
variables δ and η, which are related to D and H by

D = gd(δ) = vec−1
(

f−1

d (C⊤
d δ)

)

, H = gh(η) = vec−1
(

f−1

h (C⊤
h η)

)

, (18)

where the vec−1 (·) function maps its vector input into a matrix of appropriate
size. The matrices Cd and Ch are the matrix square roots (Cholesky decompo-
sitions) of the covariance matrices Σd and Σh, such that δ and η are standard
i.i.d. Gaussian.

This change of variable serves two purposes. First of all, we found that
optimizing over the transformed variables was faster, more robust, and less prone
to getting stuck in local minima. Second, the transformed variables are not
constrained to be non-negative, which allows us to use existing unconstrained
optimization methods to compute their MAP estimate.

The prior distribution of the transformed variable η is

pη(η) = pH

(

gh(η)
)

|J
(

gh(η)
)

| =
1

(2π)
LM

2

exp

(

−1

2
η⊤η

)

, (19)

and the negative log prior is

Lη(η) ∝ 1

2
η⊤η. (20)

To compute the MAP estimate of the transformed variables, we must combine
this expression for the prior (and a similar expression for the prior of δ) with a
likelihood function, in which the same change of variable is made

Lδ,η|X(δ, η) = LX|D,H

(

gd(δ), gh(η)
)

+
1

2
δ⊤δ +

1

2
η⊤η. (21)

Then the MAP solution can be found by optimizing over δ and η

{δMAP, ηMAP} = argmin
δ,η

Lδ,η|X(δ, η), (22)

and, finally, estimates of D and H can be computed using Equation (18).
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Example 3 (Least squares non-negative matrix factorization with Gaus-
sian process priors (GPP-NMF)). If we use the least squares likelihood in
Equation (4), the posterior distribution in Equation (21) is given by

LLS-GPP

δ,η|X (δ, η) =
1

2

(

σ−2
N ||X − gd(δ)gh(η)||2F + δ⊤δ + η⊤η

)

(23)

The MAP estimate of δ and η is found by minimizing this expression, for which
the derivative is useful

∇ηLLS-GPP

δ,η|X (δ, η) =

σ−2
N

(

vec
(

gd(δ)⊤(gd(δ)gh(η) − X)
)

⊙ (f−1

h )′(C⊤
h η)

)⊤
Ch + η, (24)

where ⊙ denotes the Hadamard (element-wise) product. The derivative with
respect to δ is similar due to the symmetry of the NMF problem.

2.5 Link Function

Any strictly increasing link function that maps the non-negative reals to the
real line can be used in the proposed framework; however, in order to have a
better probabilistic interpretation of the prior distribution, we propose a simple
principle for choosing the link function. We choose the link function such that
f−1

h maps the marginal distribution of the elements of the underlying Gaussian
process vector h into a specifically chosen marginal distribution of the elements
of H . Such an inverse function can be found as f−1

h (hi) = P−1
H

(

Ph(hi)
)

where
P(·) denotes the marginal cumulative distribution functions (cdf).

Since the marginals of a Gaussian process are Gaussian, Ph(hi) is the Gaus-
sian cdf, and, using Equation (13), the inverse link function is given by

f−1
h (hi) = P−1

H

(

1

2
+

1

2
Φ

(

hi√
2σi

))

(25)

where σ2
i is the i’th diagonal element of Σh and Φ(·) is the error function.

Example 4 (Exponential-to-Gaussian link function). If we choose to have
exponential marginals in H, as in NNSC described in Example 2, we select PH

as the exponential cdf. The inverse link function is then

f−1

h (hi) = − 1

λ
log

(

1

2
− 1

2
Φ

(

hi√
2σi

))

, (26)

where λ is an inverse scale parameter. The derivative of the inverse link func-
tion, which is needed for the parameter estimation, is given by

(f−1

h )′(hi) =
1√

2πσiλ
exp

(

λf−1

h (hi) −
h2

i

2σ2
i

)

. (27)

Example 5 (Rectified-Gaussian-to-Gaussian link function). Another in-
teresting non-negative distribution is the rectified Gaussian given by

p(x) =

{

2√
2πs

exp
(

− x2

2s2

)

, x ≥ 0

0 , x < 0
(28)
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Using this pdf in Equation (25), the inverse link function is

f−1

h (hi) =
√

2sΦ−1

(

1

2
+

1

2
Φ

(

hi√
2σi

))

, (29)

and the derivative of the inverse link function is

(f−1
h )′(hi) =

s

2σi

exp

(

f−1

h (hi)
2

2s2
− h2

i

2σ2
i

)

. (30)

2.6 Summary of the GPP-NMF Method

The GPP-NMF method can be summarized in the following steps.

1. Choose a suitable negative log likelihood function LX|D,H(D, H) based
on knowledge of the distribution of the data or the residual.

2. For each of the non-negative factors D and H , choose suitable link and
covariance functions according to your prior beliefs. If necessary, draw
samples from the prior distribution to examine its properties.

3. Compute the MAP estimate of δ and η by Equation (22) using any suitable
unconstrained optimization algorithm.

4. Compute D and H using Equation (18).

Our Matlab implemention of the GPP-NMF method is available online [23].

3 Experimental Results

We will demonstrate the proposed method on two examples, first a toy example,
and second an example taken from the chemical shift brain imaging literature.

In our experiments we use the least squares GPP-NMF described in Exam-
ple 3 and the link functions described in Example 4–5. The specific optimization
method used to compute the GPP-NMF MAP estimate is not the topic of this
paper, and any unconstrained optimization algorithm could in principle be used.
In our experiments we used a simple gradient descent with line search to per-
form a total of 1000 alternating updates of δ and η, after which the algorithm
had converged. For details of the implementation, see the accompanying Matlab
code [23].

3.1 Toy Example

We generated a 100 × 200 data matrix, Y , by taking a random sample from
the GPP-NMF model with two factors. We chose the generating covariance
function for both δ and η as a Gaussian radial basis function (RBF),

φ(i, j) = exp

(

− (i − j)2

β2

)

, (31)
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where i and j are two sample indices, and the length scale parameter, which
determines the smoothness of the factors, was β2 = 100. We set the covariance
between the two factors to zero, such that the factors were uncorrelated. For
the matrix D we used the rectified-Gaussian-to-Gaussian link function with
s = 1, and for H we used the exponential-to-Gaussian link function with λ = 1.
Finally, we added independent Gaussian noise with variance σ2

N = 25, which
resulted in a signal-to-noise ratio of approximately −7 dB. The generated data
matrix is shown in Figure 1.

We then decomposed the generated data matrix using four different methods:

1. LS-NMF: Standard least squares NMF [8]. This algorithm does not allow
negative data points, so these were set to zero in the experiment.

2. CNMF: Constrained NMF [6, 7], which is a least squares NMF algorithm
that allows negative observations.

3. GPP-NMF: Correct prior: The proposed method with correct link-
functions, covariance matrix, and parameter values.

4. GPP-NMF: Incorrect prior: To illustrate the sensitivity of the method
to prior assumptions, we evaluated the proposed method with incorrect
prior assumptions: We switched the link functions, such that for D we
used the exponential-to-Gaussian, and for H we used the rectified-Gaussian-
to-Gaussian. We used an RBF covariance function with β2 = 10 and
β2 = 1000 for D and H respectively.

The results of the decompositions are shown as reconstructed data matrices
in Figure 1. All four methods find solutions that visually appear to fit the
underlying data. Both LS-NMF and CNMF find non-smooth solutions, whereas
the two GPP-NMF results are smooth in accordance with the priors. In the
GPP-NMF with incorrect prior, the dark areas (high pixel intensities) appear
too wide in the first axis direction and too narrow in the section axis direction,
due to the incorrect setting of the covariance function. The GPP-NMF with
correct prior is visually almost equal to the true underlying data.

Plots of the estimated factors are show in Figure 2. The factors estimated by
the LS-NMF and the CNMF methods appear noisy and are non-smooth, whereas
the factors estimated by the GPP-NMF are smooth. The factors estimated by
the LS-NMF method have a positive bias, because of the truncation of negative
data. The GPP-NMF with incorrect prior has too many local extrema in the
D factor and too few in the H factor due to the incorrect covariance functions.
There are only minor difference between the result of the GPP-NMF with the
correct prior and the underlying factors.

Measures of root mean squared error (RMSE) of the four decompositions are
given in Figure 3. All four methods fit the noisy data almost equally well. (Note
that, due to the additive noise with variance 25, a perfect fit to the underlying
factors would result in a RMSE of 5 with respect to the noisy data.) The LS-
NMF fits the data worst due to the truncation of negative data points, and the
CNMF fits the data best, due to overfitting. With respect to the noise free data
and the underlying factors, the RMSE is worst for the LS-NMF and best for
the GPP-NMF with correct prior. The GPP-NMF with incorrect prior is better
than both LS-NMF and CNMF in this case. This shows, that in this situation it
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Noisy data Underlying data

LS-NMF CNMF

GPP-NMF: Incorrect prior GPP-NMF: Correct prior

100 2001 100 200
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1
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100

1

50

100

Figure 1: Toy example data matrix (upper left), underlying noise-free non-
negative data (upper right), and estimates using the four methods described
in the text. The data has a fairly large amount of noise and the underlying
non-negative factors are smooth in both directions. The LS-NMF and CNMF
decomposition are non-smooth, since these methods do not model of correlations
in the factors. The GPP-NMF, which uses a smooth prior, finds a smooth
solution. When using the correct prior, the soulution is very close to the true
underlying data.
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Figure 2: Underlying non-negative factors in the toy example: Columns of D

(left) and rows of H (right). The factors found by the LS-NMF and the CNMF
algorithm are noisy, whereas the factors found by the GPP-NMF method are
smooth. When using the correct prior, the factors found are very similar to the
true factors.

10



Preprint submitted to Hindawi Publishing Corporation.

better to use a prior which is not perfectly correct, compared to using no prior
as in the LS-NMF and CNMF methods, (which corresponds to a flat prior over
the non-negative reals and no correlations.)

R
M

S
E

NMF

CNMF

GPP-NMF: Incorrect prior

GPP-NMF: Correct prior

Noisy data Noise free data Underlying factors
0

1

2

3

4

5

6

Figure 3: Toy example: Root mean squared error (RMSE) with respect to the
noisy data, the underlying noise free data, and the true underlying non-negative
factors. The CNMF solution fits the noisy data slightly better, but the GPP-
NMF solution fits the underlying data much better.

3.2 Chemical Shift Brain Imaging Example

Next, we demonstrate the GPP-NMF method on 1H decoupled 31P chemical
shift imaging data of the human brain. We use the data set from Ochs et al.
[24], which has also been analyzed by Sajda et al. [6, 7]. The data set, which is
shown in Figure 4, consists of 512 spectra measured on an 8 × 8× 8 grid in the
brain.

Ochs et al. [24] use PCA to determine, that the data set is adequately
described by two sources (which correspond to brain and muscle tissue.) They
propose a bilinear Bayesian approach, in which they use a smooth prior over
the constituent spectra, and force to zero the amplitude of the spectral shape
corresponding to muscle tissue at 12 positions deep inside the head. Their
approach produces physically plausible results, but it is computationally very
expensive and takes several hours to compute.

Sajda et al. [6, 7] propose an NMF approach that is reported also to produce
physically plausible results. Their method is several orders of magnitude faster,
taking less than a second to compute. The disadvantage of the method of Sajda
et al. compared to the Bayesian approach of Ochs et al. is, that it provides no
mechanism for using prior knowledge to improve the solution.

The GPP-NMF approach we propose in this paper bridges the gap between
the two previous approaches, in the sense that it is a relatively fast NMF ap-
proach, in which priors over the factors can be specified. These priors are
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specified by the choice of the link and covariance functions. We used prior pre-
dictive sampling to find reasonable settings of the the function parameters: We
drew random samples from the prior distribution and examined properties of
the factors and reconstructed data. We then manually adjusted the parameters
of the prior to match our prior beliefs. An example of a random draw from the
prior distribution is shown in Figure 5, with the parameters set as described
below.

We assumed that the factors are uncorrelated, so the covariance between
factors is zero. We used a Gaussian RBF covariance function for the constituent
spectra, with a length scale of β = 0.3 parts per million (ppm), and we used
the exponential-to-Gaussian link function with λd = 1. This gave a prior for
the spectra that is sparse with narrow smooth peaks. For the amplitude at the
512 voxels in the head, we used a Gaussian RBF covariance function on the 3-D
voxel indices, with length scale β = 2. Furthermore, we centered the left-to-
right coordinate axis in the middle of the brain, and computed the RBF kernel
on the absolute value of this coordinate, so that a left-to-right symmetry was
introduced in the prior distribution. Again, we used the exponential-to-Gaussian
link function, and we chose λh = 2 · 10−4 to match the overall magnitude of the
data. This gave a prior for the amplitude distribution that is sparse, smooth,
and symmetric. The noise variance was set to σ2

N = 108 which corresponds to
the noise level in the data set.

We then decomposed the data set using the proposed GPP-NMF algorithm
and, for comparison, reproduced the results of Sajda et al. [7] using their CNMF
method. The results of the experiments are shown in Figure 4. An example of
a random draw from the prior distribution is shown in Figure 5. The results
of the CNMF is shown in Figure 6, and the results of the GPP-NMF is shown
in Figure 7. The figures show the constituent spectra and the fifth axial slice
of the spatial distribution of the spectra. The 8 × 8 spatial distributions are
smoothed in the illustration, similar to the way the results are visualized in the
literature.

The results show that both methods give physically plausible results. The
main difference is that the spatial distribution of the spectra corresponding
to muscle and brain tissue is much more separated in the GPP-NMF result,
which is due to the exponential, smooth, and symmetric prior distribution. By
including prior information, we obtain a solution, where the factor corresponding
to muscle tissure is clearly located on the edge of the skull.

4 Conclusions

We have introduced a general method for exploiting prior knowledge in non-
negative matrix factorization, based on Gaussian process priors, linked to the
non-negative factors by a link function. The method can be combined with
any existing NMF cost function that has a probabilistic interpretation, and
any existing unconstrained optimization algorithm can be used to compute the
maximum a posteriori estimate.

Experiments on toy data show, that with a suitable selection of the prior
distribution of the non-negative factors, the GPP-NMF method gives much
better results in terms of estimating the true underlying factors, both when
compared to traditional NMF and CNMF.
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Figure 4: Brain imaging data matrix (top) along with the estimated decompo-
sition and residual for the CNMF (middle) and GPP-NMF (bottom) method.
In this view the results of the two decompositions are very similar, the data
appears to be modeled equally well and the residuals are similar in magnitude.
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Figure 5: Brain imaging data: Random draw from the prior distribution with
the parameters set as described in the text. The prior distribution of the con-
stituent spectra (left) is exponential and smooth and the spatial distribution
(right) in the brain is exponential, smooth, and has a left-to-right symmetry.

13



Preprint submitted to Hindawi Publishing Corporation.

[ppm]

-20-15-10-505

0

0.1

0.2

0

0.1

0.2

Figure 6: CNMF decomposition result. The recovered spectra are physically
plausible, and the spatial distribution in the brain for the muscle (top) and
brain (bottom) tissue is somewhat separated. Muscle tissue is primarily found
near the edge of the skull, whereas brain tissue is primarliy found at the inside
of the head.
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Figure 7: GPP-NMF decomposition result. The recovered spectra are very
similar to the spectra found by the CNMF method, but they are slightly more
smooth. The spatial distribution in the brain is highly separated between brain
and muscle tissue, and it is more symmetric than the CNMF solution.
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Experiments on chemical shift brain imaging data show that the GPP-NMF
method can be successfully used to include prior knowledge of the spectral
and spatial distribution, resulting in better spatial separation between spectra
corresponding to muscle and brain tissue.
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