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Abstract tional auditory scene analysis (CASA) literature, tryingricorpo-
) ) ) rate various grouping cues of the human auditory systemaadp

We apply machine learning techniques to the problem of s&par  separation algorithms [9, 10]. In the work by Ellis and Weisk]
ing multiple speech sources from a single microphone réagrd  careful consideration is given to the representation oétuo sig-

The method of choice is a sparse non-negative matrix faztboh  nals so that the perceived quality of the separation is miaith
algorithm, which in an unsupervised manner can learn spayse In this work we propose to use the sparse non-negative ma-
resentations of the data. This is applied to the learningee$qn-  trix factorization (SNMF) [12] as a computationally atttise ap-

alized dictionaries from a speech corpus, which in turn @edu  proach to sparse encoding separation. As a first step, averco
to separate the audio stream into its components. We shaw thapjete dictionaries are estimated for different speakegasparse
computational savings can be achieved by segmenting tinnia  representations of the signals. Separation of the sougeailsiis
data on a phoneme level. To split the data, a conventionacspe  achieved by merging the dictionaries pertaining to the ceiin
recognizer is used. The performance of the unsupervised@nd  the mixture and then computing the sparse decomposition. We

pervised adaptation schemes result in significant impreviesin - explore the significance of the degree of sparseness andithe n
terms of the target-to-masker ratio. ber of dictionary elements. We then compare the basic unsupe
vised SNMF with a supervised application of the same algorit
1. Introduction in which the training data is splitinto phoneme-level suliypems,

leading to considerable computational savings.

The article is organized as follows: First, the separation
method based on SNMF is explained in details, and we elaborat
on the idea of computing the SNMF on individual phonemess Thi
is followed by simulations demonstrating the usefulnesthefal-
gorithm on a speech separation task. We conclude with a brief
discussion and suggest future improvements of the approach

A general problem in many applications is that of extractime

underlying sources from a mixture. A classical example éssib-

called cocktail-party problem in which the problem is toaguoize

or isolate what is being said by an individual speaker in a-mix

ture of speech from various speakers. A particular difficatsion

of the cocktail-party problem occurs when only a singlercte

recording is available, yet the human auditory system satlis

problem for us. Despite its obvious possible application®ig.,

hearing aids or as a preprocessor to a speech recognititensys 2. Method

no machine has been built, which solves this problem in g¢ner  |n the following, we consider modelling a magnitude spegtam
Within the signal processing and machine learning communi- representation of a mixed speech signal. We represent #elsp

ties, the single channel separation problem has been dtexien- signal in the non-negative Mel spectrum magnitude domasn, a
sively, and different parametric and non-parametric digmadels suggested by Ellis and Weiss [11].
have been proposed. Here we posit that the spectrogram can be sparsely repeelsent

Hidden Markov models (HMM) are quite powerful for mod-  in an overcomplete basis,
elling a single speaker. It has been suggested by Roweis [idet
a factorial HMM to separate mixed speech. Another suggestio Y =DH (1)
by Roweis is to use a factorial-max vector quantizer [2].gJand ) ) ] ] )
Lee [3] use independent component analysis (ICA) to learicad  thatis, each data point held in the columnsyofs a linear combi-
tionary for sparse encoding [4], which optimizes an indejseice nation of few columns oD. The dictionaryD, can hold arbitrar-

measure across the encoding of the different sources.nietet ily many columns, and the code matrB, is sparse. Furthermore,
and Olsson [5] generalize these results to overcompletoniar- we assume that the mixture signal is a suniiaource signals
ies, where the number of dictionary elements is allowed teed R

the dimensionality of the data. Other methods learn spedira v — Z Y.

tionaries based on different types of non-negative maagkdriza- - v

tion (NMF) [6]. One idea is to assume a convolutive sum mifur

allowing the basis functions to capture time-frequencucitires The basis of the mixture signal is then the concatenatiorhef t

[7, 8]. source dictionariesD = [D;...D;...Dg], and the complete
A number researchers have taken ideas from the computa-code matrix is the concatenation of the source-individuales,



H=[H ..H .. HE]T. By enforcing the sparsity of the SNMF
code matrix,H, it is possible to separaf¥ into its sources if the Training Data »|  Dictionary
dictionaries are diverse enough.

As a consequence of the above, two connected tasks have to

be solved: 1) the learning of source-specific dictionaties yield a
sparse codes, and, 2) the computing of sparse decompssition HMM
separation. We will use the sparse non-negative matrixifaet- » SNMF

> Phoneme 1
tion method proposed by Eggert and Kdrner [12] for bothg$ask -

A J

Training Data Dictionary

2.1. Sparse Non-negative Matrix Factorization

»| Phoneme K

Non-negative matrix factorization (NMF) computes the deeo
position in Equation (1) subject to the constraints thatzdlri- b

ces are non-negative, leading to solutions that are passebor

sparse [6]. However, the basic NMF does not provide a well- Figure 1: Two approaches for learning sparse dictionaries o
defined solution in the case of overcomplete dictionarieserw speech. The first approach)(is to learn the dictionary from
the non-negativity constraints are not sufficient to obtasparse a sparse non-negative matrix factorization of the compietie-

solution. The sparse non-negative matrix factorizatioNNI%) ing data. The second approadh) (s to segment the training
optimizes the cost function data into individual phonemes, learn a sparse dictionargéch
phoneme, and compute the dictionary by concatenating thie in
E = |[Y-DH|}+A) H; st. DH>0 (2 vidual phoneme dictionaries.

ij

whereD is the column-wise normalized dictionary matrix. This
cost function is the basic NMF quadratic cost augmented by an
Ly norm penalty term on the coefficients in the code matrix. The
parameter\, controls the degree of sparsity. Any algorithm that
optimizes Equation (2) can be regarded as computing a maximu
posterior (MAP) estimate given a Gaussian likelihood fiorcand

a one-sided Laplacian prior distribution ovr. The SNMF can

be computed by alternating updatesiofandH by the following

The computational savings associated with this divide-and
conquer approach are significant. Since the running timé&ef t
SNMF scales with the size of the training data and the number
of elements in the dictionary, dividing the problem into SRM
subproblems for each phoneme reduces the overall commaiti
burden by a factor corresponding to the number of phonenwes. F
example, if the data is split into 40 phonemes, we need t@stiv
SNMF subproblems each with a complexity bf40? compared

rules [12] to the full SNMF problem. In addition to this, since the phore
YD, SNMF subproblems are much smaller than the total SNMF prob-
H;, < H,;e -_ lem, a faster convergence of the iterative SNMF algorithm ca
' ' R'D, + A be expected. These advantages makes it desirable to cothpare
7 J . - . .
T = quality of sparse dictionaries estimated by the two methods
>, Hi; [Yi+ (R] D;)D;]
D; «— Dje

3. Simulations

Part of the Grid Corpus [13] was used for evaluating the psedo
method for speech separation. The Grid Corpus consistenpiai
structured sentences from a small vocabulary, and has 24ese
and 1000 sentences per speaker. Each utterance is a fewdsecon
and word level transcriptions are available. We used hathef
corpus as a training set.

> Hi; [Ri + (V/D;)D,]

whereR = DH, and the bold operators indicate pointwise multi-
plication and division.

We first apply SNMF to learn dictionaries of individual speak
ers. To separate speech mixtures we keep the dictionarydixed
update only the code matri¥]. The speech is then separated by
computing the reconstruction of the parts of the sparserdposi-
tion pertaining to each of the used dictionaries. In caségnihe

h L o . . 3.1. Phoneme Transcription
identities of the speakers within a given mixture are unkmaey P

can be estimated as the combination of dictionaries thaimze First, we used speech recognition software to generategphen

Equation (2). transcriptions of the sentences. For each speaker in tipeisar
phoneme-based hidden Markov model (HMM) was trained using

2.2. Two Ways to Learn Sparse Dictionaries the HTK toolkitt. The HMM's were used to compute an align-

ment of the phonemes in each sentence, taking the pronuncia-
tions of each word from the British English Example Pronanci

ure 1. '!'he firstis a direct, u_nsuperwsed approach whe_re_nhe d tion (BEEP) dictionar§. This procedure provided phoneme-level
tionary is learned by computing the SNMF on a large trainiatad - .
transcriptions of each sentence. In order to evaluate thétyu

set of a single speaker. The second approach is to first segmen : ; L
ey . - of the phoneme alignment, the automatic phoneme transuript
the training data according to phoneme labels obtained égctp S
was compared to a manual transcription for a few sentences. W

recognition software based on a hidden Markov model. Then, a - . - ;
e . ) .~ found that the automatic phoneme alignment in general wie qu
sparse dictionary is learned for each phoneme and the final di

tlpn_ary is constructed by concatenating the |nd_|V|duaI n#e Lpvaiable fromhtk eng.cam.ac.uk.
dictionaries. As a consequence, a smaller learning proisexd- 2vailable by anonymous ftp from
dressed by the SNMF for each of the phonemes. svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.

We study two approaches to learning sparse dictionarieskige
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Figure 2: The automatic phoneme transcription as compuyed b
the trained hidden Markov model (HMM) for an example senéenc
from the Grid Corpus. A manual transcription is provideddom-
parison, confirming the conventional hypothesis that theMHig!

. . : PN Figure 3: A few samples of columns of phoneme dictionaries
a useful tool in segmenting a speech signal into its phonemes

learned from female speech. The SNMF was applied to data,
which had been phoneme-labelled by a speech recognizer. Not
surprisingly, the basis functions exhibit the some gengraper-
reasonable. An example is given in Figure 2. ties of the respective phonemes, and additional variagorap-
tured by the algorithm, such as the fundamental frequentlyen

. . - . case of voiced phonemes.
3.2. Preprocessing and Learning Dictionaries P

We preprocessed the speech data in a similar fashion todgitls | | Complete | Segmented|
Weiss [11]: the speech was prefiltered with a high-pass /filter Same gendef 4.8+£0.4dB | 4.3£0.3 dB
1-0.95z"*, and the STFT was computed with an analysis window Opp. gender| 6.6+0.3dB | 6.440.3 dB

of 32ms, corresponding t800 samples at a sample rate2ifkHz.
An overlap of50 percent was used between frames. This yielded Table 1: Average signal-to-noise ratio (SNR) of the separat
a spectrogram with 401 frequency bins which was then mappedsignals for dictionaries trained on the complete speecktspe
into 80 frequency bins on the Mel scale. The training set was r grams and on individual phonemes. Dictionaries were |@hnith
weighted so that all frames containing energy above a tbtésh N = 560 and\ = 0.1.
were normalized by their standard deviation. The resultivag-
nitude Mel-scale spectrogram representation was emplioyta:
experiments. 3.3. Speech Separation

In order to assess the effects of the model hyper-parameter
and the effect of splitting the training data according thememe
transcriptions, a subset of four male and four female speakere
extracted from the Grid Corpus. We constructed a set of 64&dix
sentences by mixing two randomly selected sentences fooi}
binations of the eight selected test speakers.

sFor each test sentence, we concatenated the dictionarite of
two speakers in the mixture, and computed the code matngusi
the SNMF updates. Then, we reconstructed the individuahninag
tude spectra of the two speakers and mapped them from the Mel-
frequency domain into the linear frequency STFT domain.aSep
rated waveforms were computed by spectral masking andrspect
Two different sets of dictionaries were estimated for each gram inversion, using the original phase of the mixed sigiak
speaker. The first set was computed by concatenating the specseparated waveforms were then compared with the origieahcl
trograms for each speaker and computing the SNMF on the com-signals, computing the signal-to-noise ratio.
plete training data for that speaker. The second set was cOM-  The results in Figure 4 show that the quality of separatien in
puted by concatenating the parts of the training data qoor&s  creases withV. This agrees well with the findings of Ellis and
ing to each phoneme for each speaker, computing the SNMF for\yeiss [11]. Furthermore, the choice of sparsityis important for
each phoneme spectrogram individually, and finally comaite  he performance of the separation method, especially ircaise
ing the individual phoneme dictionaries. To save compofati  of ynsegmented data. The individual phoneme-level dieties
only 10 percent of the training set was used to train theahieli-  are 50 small in terms oV that the gain from enforcing sparsity
ies. In a Matlab environment running onl&Glz Intel proces- iy the NMF is not as significant; the segmentation in itseifrsp
sor the computation of the SNMF for each speaker took approxi- fies the dictionary to some extend. Table 1 shows that theadeth
mately 30 minutes, whereas the SNMFs for individual phoreeme \yorks pest for separating speakers of opposite gender, @ e

were computed in a few seconds. The algorithm was allowed expected. Audio examples are availablenitkelschmidt.dk .
to run for maximally 500 iterations or until convergence &s d

fined by the relative change in the cost function. Figure 3vsho
samples from a dictionary which was learned using SNMF on
the phoneme-segmented training data for a female speaker. T We further studied how the sparse dictionaries can be usdere
dictionaries were estimated for four different levels otusity, tify the speaker. We mapped each mixed sentence onto each com
A = {0.0001,0.001,0.01,0.1}, and four different dictionary bination of dictionaries by concatenating the two dictides and
sizes,N = {70, 140, 280, 560}. This was done for both the com-  computing the SNMF only updating the code matrix. The qual-
plete and the phoneme-segmented training data. ity of fit between the mixed signal and the combined dictigriar

3.4. Speaker Identification
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Figure 4: Average signal-to-noise ratio (SNR) of the setgakraig-
nals for dictionaries trained on the complete speech spgretms
and on individual phonemesa) as a function of the dictionary
size, N, with sparsityA = 0.1, and p) as a function of the spar-
sity with N = 560.

reflected in the final value of the SNMF cost function. The comb
nation of dictionaries which gave the lowest cost is a gotidhese

of the identity of the two speakers in the mixture. In our dmu
tions, this estimate was correct 95 percent of the time.

4. Discussion and Outlook

In this work, we have successfully applied sparse non-negat
matrix factorization (SNMF) to the problem of monaural sgiee
separation and speaker identification.

The SNMF learns large overcomplete dictionaries in an unsu-
pervised fashion, leading to a more sparse representasfons
dividual speakers than for example the basic NMF. Inspeatio
the dictionaries reveals that they capture fundamentglepties of
speech, in fact they learn basis functions that resemblegrhes.
This has lead us to adopt a working hypothesis that the legrni
of signal dictionaries on a phoneme level is a computatishatft-
cut to the goal, leading to similar performance. Our experita
show, that the practical performance of sparse dictiosdgi@rned
in this way performs only slightly worse than dictionarieained
on the complete dataset. In future work, we hope to benefit fur
ther from the phoneme labelling of the dictionaries in folating
transitional models in the encoding space of the SNMF, hdlyef
matching the dynamics of speech.

Our results confirm that it is viable to learn personalized di
tionaries and apply them blindly, that is, when the ideesif the
speakers are unknown. We are currently investigating nalsthm
more efficiently determine the active sources in a mixtuaéer
than exhaustively evaluating all possibilities.

An issue that we are currently studying is that of applyirg th

proposed single-channel speech separator to the task etlspe
recognition. A major obstacle in this connection is to ovene
the generally high sensitivity of speech recognizers tesmand, in
particular, the artifacts created by signal enhancemeatrighms.

A possible answer to this challenge is to train the speecbgrec
nizer on data that contains these artifacts, more spedyfioal
“separated” speech sources.
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