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ABSTRACT
The development of appropriate models for dynamic func-
tional connectivity is imperative to gain a better understand-
ing of the brain both during rest and while performing a task.
Leading eigenvector dynamics analysis is among the favored
methods for assessing frame-wise connectivity, but eigenvec-
tors are distributed on the sign-symmetric unit hypersphere,
which is typically disregarded during modeling. Here we
develop both mixture model and Hidden Markov model for-
mulations for two sign-symmetric spherical statistical distri-
butions and display their performance on synthetic data and
task-fMRI data involving a finger-tapping task.

Index Terms— Dynamic functional connectivity, Lead-
ing eigenvector dynamics analysis, Watson, Angular Central
Gaussian, Hidden Markov models

1. INTRODUCTION

The brain is a dynamic complex system composed of anatom-
ically and functionally distinct brain regions that integrate
their activity to form functional brain networks [1]. There
is a great interest in uncovering dynamic functional brain
networks using functional neuroimaging modalities such as
functional magnetic resonance imaging (fMRI) data, both in
terms of the topographical layout of states of activity and
state-state dynamics [2].

Existing methods for uncovering time-varying brain net-
works in both resting-state and task fMRI predominantly
include assessing interregional correlation in sliding tempo-
ral windows and subsequently performing clustering using,
e.g., k-means [3]. However, windowed methods require
decisions on window length, function, and stride, which
greatly influence results [4]. Leading eigenvector dynam-
ics analysis (LEiDA) [5] is a dynamic functional connec-
tivity (dFC) method that computes the leading eigenvector
of instantaneous phase coherence maps. By focusing on
phase coherence instead of correlation, only the instanta-
neous synchrony between regional oscillations influences the
connectivity measure, while the strength of the correlation

is disregarded. As such, the effect of potentially spurious
connectivity spikes arising from, e.g., motion is suppressed,
while a window-free connectivity measure is established.

Eigenvectors represent axes and are thus, by convention,
normalized to unit norm and have arbitrary sign, meaning that
they are distributed on the antipodally symmetric unit hyper-
sphere. Olsen et al., (2022) suggested the use of diametri-
cal clustering [6] in conjunction with LEiDA [7], which as-
sumes data to be distributed according to the Watson distri-
bution [8], which models points on the unit hypersphere with
sign-symmetric mean cluster directions.

The natural probabilistic extension of the K-means type
diametrical clustering is a mixture of Watson distributions [9],
which in addition models isotropic cluster variance as a scalar,
as well as cluster weights indicating their relative importance.
The generalization of the Watson distribution is the Bingham
distribution [10], which models data using a covariance ma-
trix, thereby allowing for anisotropic covariance structures.
However, the Bingham distribution has a normalization con-
stant that is intractable in high dimensions. Instead, the Angu-
lar Central Gaussian (ACG) distribution [11], which is an ana-
logue of the zero-mean Gaussian distribution projected onto
the hypersphere, has a tractable normalization constant.

Here we model synthetic and task-fMRI data with both
Watson and ACG mixture models as well as their equivalent
Hidden Markov model (HMM) formulations, leading to a
comparison of four models. The models are implemented
in PyTorch, which enables gradient-based likelihood opti-
mization using automatic differentiation. Using synthetic
data we demonstrate the superiority of the ACG in learning
anisotropic covariance structures. Using fMRI data involving
a finger-tapping experiment [12] we assess if the models un-
cover sensible connectivity representations in a constrained
setting. We demonstrate that while the Watson model learns
a rank one connectivity matrix representation, the ACG may
be used to learn any rank r ∈ {1, . . . , p} representation,
where the optimal rank r and number of components K can
be found using cross-validation.



2. METHODS

2.1. Leading Eigenvector Dynamics Analysis

LEiDA computes the dominant instantaneous interregional
phase coherence pattern (see Fig. 1A). The regional phase
series ϕl(t) is estimated for each region l from the regional
input time series sl(t) via

ϕl(t) = tan−1

(
sl(t) ∗ 1

πt

sl(t)

)
,

where ∗ represents the convolution operator. A phase coher-
ence map At is established for regions l and l′ for each time
point t with elements Al,l′,t = cos(ϕl(t) − ϕl′(t)). Due to
the angle difference identity, a matrix with cosine elements
has rank 2, and thus, extracting the leading eigenvector from
Ax = λx retains at least half of the variance in each phase
coherence map while retaining only one latent factor.

Fig. 1. Methodological pipeline. (A): Leading eigenvector
dynamics analysis (LEiDA) constructs leading eigenvectors
of instantaneous phase coherence maps. (B): Synthetic data
on the sign-symmetric unit hypersphere generated by a two-
component angular central Gaussian (ACG) distribution with
the displayed covariance matrices. (C): Two-component Wat-
son and ACG mixture model fits on the synthetic data in (B).

2.2. Watson distribution

Since eigenvectors by convention are unit norm and sign-
symmetric [7], the LEiDA data x lie on the antipodally sym-
metric (p − 1)-dimensional unit hypersphere, ±x ∈ Sp−1.
Several statistical distributions model points on this manifold,
the simplest being the Watson distribution with density [8]:

fW(±x;µ, κ) = cp(κ)e
κ(µ⊤x)2 , x ∈ Sp−1, (1)

where µ ∈ Sp−1 is the mean direction and κ is a scalar preci-
sion parameter. cp(κ) is the normalization constant

cp(κ) =
Γ
(
p
2

)
2πp/2M

(
1
2 ,

p
2 , κ

) ,
where M is Kummer’s confluent hypergeometric function

M(a, b, κ) =

∞∑
n=0

Γ(a+ n)Γ(b)

Γ(a)Γ(b+ n)

κn

n!
.

2.3. Angular Central Gaussian distribution

Whereas the Watson distribution has equal variance in all di-
mensions, a more expressive alternative is the ACG distribu-
tion with density:

fACG(±x;Λ) =
Γ
(
p
2

)
2πp/2|Λ| 12

(
x⊤Λ−1x

)− p
2 , x ∈ Sp−1.

(2)
Here Λ ∈ Rp×p is a symmetric positive-definite matrix iden-
tifiable up to a positive scale factor.

2.4. Mixture models and Hidden Markov models

The Watson and ACG distributions can enter as components
in a mixture model with weights π = {πj}Kj=1, leading to the
likelihood

LMix (θ,π|X) =

N∏
i=1

K∑
j=1

πj f (xi;θj) , (3)

where θj are the parameters of the jth component, i.e., θj =
{µj , κj} (Watson) or θj = Λj (ACG).

While a mixture model does not account for temporal
structure, we can model state dynamics using an HMM. This
extends the mixture model by a transition probability matrix
T with elements Tj′,j = P

(
z
(s)
t = j|z(s)t−1 = j′

)
, where z

(s)
t

is the state at time t ∈ 1, . . . , τs for the sth sequence. In
practice, the HMM is likely more reasonable than the mixture
model as it favors more smooth state transitions. Maximum
likelihood inference requires evaluation over all possible
state sequences z: This can be computed efficiently using the
forward algorithm

α
(s)
t,j =

K∑
j′=1

α
(s)
t−1,j′Tj′,jf(x

(s)
t ;θj),

where α
(s)
t,j represents the probability of being in state j at

time t, and α
(s)
1,j = πjf(x

(s)
1 ;θj). Finally, the likelihood to be

optimized is



LHMM(θ,π,T |X) =

S∏
s=1

K∑
j=1

α
(s)
τs,j

, (4)

where S is the number of observation sequences.

2.5. Computational implementation

We maximized the likelihood of the mixture model (Eq. 3)
and HMM (Eq. 4) using stochastic gradient descent with the
ADAM [13] optimizer with a learning rate of 0.1, which we
found to be a reasonable trade-off between fast convergence
and stochasticity. Calculations were performed in the log do-
main where possible to avoid numerical instability. Param-
eter constraints were handled by reparametrization, express-
ing all parameters in terms of unconstrained variables: Wat-
son components were constrained to unit-norm mean direc-
tions µ = µ̃

∥µ̃∥ and the positive precision parameters were ex-
pressed using the softplus function κ = log(1+ eκ̃). We used
a softmax function for the mixture weights πj = eπ̃j∑K

k=1 eπ̃k

as well as each row of the transition matrix T. For the ACG
components, we developed two estimation schemes: For low-
dimensional problems, we expressed Λ−1 = LL⊤ as a prod-
uct of lower-triangular matrices. For high dimensions we in-
troduce a low rank parametrization Λ = MM⊤ + I, where
M ∈ Rp×r is of rank r and I is the identity matrix. M starts
with one column vector and consecutively adds columns ini-
tialized by the previous model until rank r is achieved.

2.6. Experimental data

We analyzed experimental 3T BOLD fMRI data with acqui-
sition parameters (TR/TE = 2490/30 ms, 3 × 3 × 3 mm3
isotropic voxels, 240 volumes). The full data acquisition and
preprocessing details are described elsewhere [12]. During
scanning, the 29 participants performed a block-design motor
task visually cued by a blinking light indicating whether the
finger tapping should be performed with the right or left hand
(see Fig. 1A). We used the 100-region Schaefer parcellation
to spatially downsample the volumes [14]. For model per-
formance investigations we used a split-half cross-validation
scheme in which the first 120 volumes for all subjects were
part of the training set, while the latter 120 volumes consti-
tuted the test set.

Brain networks were visualized with BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) [15].
All code produced is available at https://github.com/
anders-s-olsen/Task_WMM_ACGMM_HMM.

3. RESULTS

3.1. Synthetic data

Three-dimensional data (on the two-sphere) were generated
from a two-component ACG with a time-dependent proba-

bility corresponding to the maximum right/left-hand motor
task probability (Fig. 1). One of the components is isotropic
and the other has an oval covariance structure. The Watson
model learns mean cluster directions corresponding roughly
to the ground truth, albeit with a scalar variance parameter
for both components (Fig. 1C). On the other hand, the ACG
model optimized via the Cholesky decomposition of Λ−1

learns roughly the correct distributions.
Next, we conducted a noise experiment where we varied

the difference of the off-diagonal elements of Λ1 from 1 and
the first diagonal element of Λ2, thereby effectively increas-
ing the isotropic variance of both components while the co-
variance of latter also gradually loses anisotropy. The normal-
ized mutual information (NMI) reveals that the ACG models
generally have a higher information overlap with the ground
truth cluster indices than the Watson equivalents. The HMM
models work well for low noise levels but converge to single-
component models for medium-high noise levels leading to
zero NMI.

Fig. 2. Normalized mutual information between the two-
component fit state probabilities (mixture models (MM)) or
state sequence (Hidden Markov models (HMM)) with the true
cluster identity. Noise varied as one minus the off-diagonal
elements of Λ1 and the first diagonal element of Λ2 in Figure
1B. Error bars represent the standard deviation over five runs.

3.2. Finger-tapping fMRI data

The Cholesky formulation of the ACG model becomes un-
stable in higher dimensions and tends to single-component
models. Instead we focus on a rank-r approximation Λ =
MM⊤ + I. First, we investigated whether initializing the
rank-1 ACG mixture model with the Watson mixture model
output, i.e., M =

√
κµ would lead to superior model perfor-

mance over a randomly initialized model. As seen in Fig. 3A,
the variance decreases slightly for larger K, thus, we proceed
with a Watson-initialized ACG model. Fig. 3B shows that the
test likelihood as a function of ACG rank does not appear to
improve significantly beyond r ≈ 15.

Finally, we investigated model order for all four models
including rank-15 ACG models (see Fig. 4A). While the Wat-
son models decrease in negative test likelihood over all K

http://www.nitrc.org/projects/bnv/
https://github.com/anders-s-olsen/Task_WMM_ACGMM_HMM
https://github.com/anders-s-olsen/Task_WMM_ACGMM_HMM


Fig. 3. ACG model specifications. (A): Comparison of the
test negative log-likelihood (nll) performance for two initial-
ization methods of the ACG mixture model. Error bars repre-
sent the standard deviation over five runs. (B): The evolution
of test performance dependent on ACG rank for three differ-
ent model orders.

there appears to be a slight bend in the likelihood curves at
K = 4. The ACG models increase slightly in test likelihood
from K = 4 to K = 5. Thus, K = 4 seems to be a reason-
able tradeoff between model complexity and performance for
all models. The components learned on the full dataset for the
Watson model for K = 4 (Fig. 4B) show a general hypocon-
nectivity in some subregions of the somatomotor cortex for
both the right and left hemisphere for states 2 and 4, while
states 1 and 3 appear to be less influenced by these regions
though still distinguishable. For the ACG model (Fig. 4C), all
four states clearly separate the somatomotor cortex from the
rest of the brain, two of the states being hemisphere-specific.
Interestingly, the differentiation appears to be stronger for the
right hemisphere (state 4) and even covers three of five sub-
somatomotor areas in the Schaefer-100 atlas.

4. DISCUSSION

Here we implemented Watson and ACG distributions in both
mixture model and HMM formulations to model brain dFC in
a finger-tapping task-fMRI experiment. We noticed a propen-
sity for the HMM models to converge to single-component
models for medium-high noise levels in synthetic data, indi-
cating that these are more susceptible to noise. Using split-
half cross-validation with fMRI data we demonstrated a rea-
sonable rank for the ACG models to learn from this data. Fu-
ture studies could investigate the distribution of the optimal
rank depending on data type (e.g., task vs resting-state), num-

Fig. 4. Model fits to experimental data. (A): Evolution of test
performance over model order. (B) Watson mixture model fit
for K = 4 including connectivity map Λ =

√
κµµ⊤ and

a surface rendering of the diagonal of Λ. (C) Brain graph
rendering showing the top (red) and bottom (blue) 2.5% edges
and connectivity map for the ACG mixture model fit for K =
4, where node size is the diagonal of Λ.

ber of regions, and model order. A converging rank could
indicate an optimal LEiDA-determined complexity of the hu-
man brain. The high rank indicates that the ACG captures
more information in the data than the Watson model. In the
rank-15 ACG model, we noticed a worsened test likelihood
for model orders higher than four, which could be explained
by the constrained task-active brain, i.e., we might see higher
model orders for resting-state data or more complex tasks.
The components fitted on the full data set revealed hypocon-
nectivity in some somatomotor regions for some Watson com-
ponents and all ACG components while left/right hemisphere
specificity was only present in the latter. Clearly, the com-
plexity of the state maps is higher for ACG than for Wat-
son. Further studies may investigate the temporal alignment
of states to the presumed task activation using, e.g., predictive
modeling to fully utilize the dynamic aspect of the models.
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