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ABSTRACT

Structuring knowledge systems with binary features is often based
on imposing a similarity measure and clustering objects according
to this similarity. Unfortunately, such analyses can be heavily influ-
enced by the choice of similarity measure. Furthermore, it is unclear
at which level clusters have statistical support and how this approach
generalizes to the structuring and alignment of knowledge systems.
We propose a non-parametric Bayesian generative model for struc-
turing binary feature data that does not depend on a specific choice
of similarity measure. We jointly model all combinations of binary
matches and structure the data into groups at the level in which they
have statistical support. The model naturally extends to structur-
ing and aligning an arbitrary number of systems. We analyze three
datasets on educational concepts and their features and demonstrate
how the proposed model can both be used to structure each system
separately or to jointly align two or more systems. The proposed
method forms a promising new framework for the statistical model-
ing and alignment of structure across an arbitrary number of systems.

Index Terms— Bayesian non-parametrics, relational modeling,
binary similarity, knowledge structuring.

1. INTRODUCTION

The representation, structuring, and alignment of domain knowledge
is an important challenge within computer science, information sci-
ence, cognitive science, computational linguistics and philosophy.
Knowledge representation and alignment is needed for diverse ap-
plications such as the alignment of library classification systems [1],
biomedical ontologies [2], and industry specific taxonomies [3]. In
this work, we study the case where objects are represented by a num-
ber of binary features.

The structuring of knowledge within or across systems often re-
lies on the computation of similarities between objects [4, 1, 2, 5].
One of the traditional approaches for computing similarities is the
common extension comparison between two objects [4]. Let fxy
denote the number of features where object X takes the value x ∈
{0, 1} and object Y takes the value y ∈ {0, 1}. A multitude of
similarity measures have been employed for knowledge alignment
based on different variations of quantifying similarity using these
matches including the Jaccard index [6], Simple Matching Coeffi-
cient (SMC), and Tversky’s Ratio Model [7] that respectively are

Fig. 1: Examples of similarity computation between features of two

domains in which Jaccard (top) and SMC (bottom) fail in identifying

the underlying (two) groups of objects in both domains despite the

clear structures present in each of the different type of matches. By

exploiting the structure of all types of matches (i.e., 0–0, 0–1, 1–0

and 1–1) the proposed framework for structuring binary similarity

in both cases correctly identifies the existence of two groups in each

system.

given by

Jaccard(X,Y ) = f11/(f11 + f10 + f01) ,

SMC(X,Y ) = (f11 + f00)/(f11 + f10 + f01 + f00) ,

Tversky(X,Y ) = f11/(f11 + υf10 + βf01) .

In Tversky’s Ratio Model, υ and β are used to define the relative in-
fluence of 1–0 and 0–1 matches such that for υ = β = 1 Tversky’s
Ratio Model is equivalent to the Jaccard similarity. Unfortunately,
the alignment of knowledge systems can be strongly affected by the
similarity measure employed. Consider for instance the two exam-
ples given in Figure 1 in which the Jaccard index and SMC each
are unable to detect structure between two groups of entities in two
systems despite the clear structure in the raw fxy matches.

Similarity computations between objects play important roles in
the ontology alignment discipline, integrated with the structural in-
formation of ontologies. For example, performances of aligning in-
dustry specific taxonomies and regulations employing a similarity
measure (i.e. cosine similarity, Jaccard similarity, or market bas-
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ket analysis) combined with hierarchical structure information were
compared in [3]. Performances of biomedical ontology mapping
with a new ontological similarity measure, named Tversky’s pa-
rameterized ratio model of similarity were investigated in [2] and
compared against other measures derived from the idea of Tversky’s
Ratio model [8, 9]. While the performance evaluation of ontol-
ogy matching is one branch of knowledge alignment, performance
of similarity-based alignment and (re-)structuring of two knowledge
systems was investigated in [10].

When structuring systems based on similarity an important open
problem is to quantify the number of groups which are significant:
Similarities based on few features are inherently more uncertain
compared to similarity measures defined using many features. Con-
sequently an alignment approach should take this uncertainty into
account. We presently propose a non-parametric Bayesian genera-
tive model for the structuring of binary data that is not reduced to
a specific projection of the different fxy matches based on exist-
ing similarity measures such as Jaccard, SMC or Tversky’s Ratio
Model but exploits the entire structure of all matches simultaneously
when structuring and aligning systems. The method can be used
to simultaneously align an arbitrary number of systems and is able
to automatically infer the number of groups within each system by
quantifying the level in which groups have statistical support as de-
fined by their structured interactions across the considered matches.
The model proposed extends the existing block-modeling frame-
works [11, 12, 13, 14] to the modeling of binary similarity matches
and we demonstrate the models utility for the alignment of concepts
within and between three educational systems.

2. MODEL FOR BINARY FEATURE MATCHES

We consider organizing knowledge both within and between sys-
tems. Let fc(i, j) be the number of matches between observation i
and j of type c ∈ C. For example, for binary data between two sys-
tems we have C = {(00), (01), (10), (11)}. Let f(i, j) denote the
vector of match counts for all types, and let F denote the counts for
all types and pairs of objects. Let further Ni,j =

∑
c fc(i, j) denote

the total number of binary features.

A single system: We will initially consider structuring binary data
from a single system such that fc(i, j) =

∑
n δ[xin, c(1)]δ[xjn, c(2)]

where xin denotes the nth feature of the ith object. As prior dis-
tribution for the clustering of objects to groups, z, we will use
the Chinese Restaurant Process (CRP) which defines a probabil-
ity distribution over a partitioning of a set of objects. The CRP is
parameterized by a concentration parameter α which governs its
propensity to forming new groups (see also [15, 16]). Once the
partitioning is formed we model the relative probability of observ-
ing each of the different types of matches between groups a and
b, denoted η(a, b), by a Dirichlet prior. The prior is parameterized
by η0 that specifies the relative extend to which the different types
of matches occur. Finally, we model the vector of the number of
matches of all types between object i and j, f(i, j), by a multinomial
distribution parameterized by η(zi, zj) (where zi denotes the group
to which observation i is assigned) as well as the total number of
features in the similarity computation N(i, j). Thus, our generative
model for organizing knowledge within one system based on all
(four) types of binary similarity matches is given by

z ∼ CRP(α), objects to groups,

η(a, b) ∼ Dirichlet(η0), proportion of types,

f(i, j) ∼ Mult(η(zi, zj), N(i, j)), no. of matches of each type.

From the above generative model of F the joint distribution can be
derived and since the Dirichlet distribution is conjugate to the multi-
nomial distribution η(a, b) can be analytically marginalized,

p(F , z|α,η0) =

∫ ∏
i �=j

p(f(i, j)|z,η)p(η|η0)p(z|α)dη =

⎡
⎣∏

i �=j

N(i, j)!∏
c fc(i, j)!

∏
a,b

B
(
m(a, b)

)
B(η0)

⎤
⎦ · Γ(α)αK

Γ(α+ I)

∏
k

Γ(nk),

where nk is the number of objects in group k, I is the total number
of objects, m(a, b) =

∑
i �=j f(i, j)δ(zi, a)δ(zj , b) is the number

of matches between groups a and b, and B(γ) =
∏

a Γ(γa)

Γ(
∑

a γa)
is the

multinomial Beta function.

Multiple systems: For structuring knowledge across multiple sys-
tems we extend the above model to consider all 2D types of binary
matches where D ≥ 2 is the number of systems. For example, for
three systems we have C = {(000), (001), . . . , (111)}. We intro-
duce system specific groups such that the observed matches of type c
are given by the D’th order tensor Fc with elements fc(i1, . . . , iD),

z(d) ∼ CRP(αd), for d ∈ {1, . . . , D},
η(a1, . . . , aD) ∼ Dirichlet(η0),

f(i1, . . . , iD) ∼ Mult
(
η(z

(1)
i1

, . . . , z
(D)
iD

), N(i1, . . . , iD)
)
.

We thereby obtain the following joint distribution

p(F , z|α,η0) =
∏

i1,...,iD

N(i1, . . . , iD)!∏
c fc(i1, . . . iD)!

∏
a1,...,aD

B
(
m(a1, . . . , aD)

)
B(η0)

·
∏
d

Γ(αd)α
Kd
d

Γ(αd + Id)

∏
kd

Γ(nkd),

where the notation is similar to that in the one system model. When
D = 2 the model reduces to co-clustering the four types of binary
matches between two systems.

According to the above model for structuring single and multiple
systems, objects are structured according to their interactions across
groups constituting homogenous blocks of binary match counts. The
above framework is thereby closely related to stochastic block mod-
els [11, 12] and non-parametric extensions such as the infinite rela-
tional model [13, 14]. Thus, the proposed model can be considered
an extension of the existing block-modeling frameworks to multino-
mial distributed count statistics.

Model inference: In order to infer z we use Markov chain
Monte Carlo (MCMC) based on Gibbs sampling with split-merge
moves [17, 18]. When modeling D systems, the Gibbs sampler
cycles through the observations of each of the D systems one at
a time and the split-merge sampler proposes merge or split moves
within each system. The hyper-parameters η0 and α are inferred
by imposing an improper uniform prior, transforming the variable
to the log-domain, and using a Metropolis-Hastings random walk
procedure based on a normal proposal distribution with standard
deviation 0.1. In our experiments the sampler was run for 1000
iterations where each iteration constituted a Gibbs sweep and 10
split-merge moves for inferring z within each system, 100 random-
walk moves for each αd parameter, and 10 random walk moves for
each parameter in η0.



Table 1: Mean normalized mutual information (NMI) between runs

as well as mean number of extracted components (K). In parenthesis

is given the uncertainty on the least significant digit computed as the

standard deviation of the mean across the 10 runs.

System 1 System 2 System 3

NMI K NMI K NMI K

Korea 1.00(0) 11.0(0) - -

Czech 0.97(1) 10.0(0) - -

Japan 0.95(2) 12.5(2) - -

Korea-Czech 1.00(0) 6.0(0) 0.97(1) 15.4(2) -

Korea-Japan 0.99(1) 9.2(1) 0.94(2) 13.8(1) -

Czech-Japan 0.94(1) 11.6(2) 0.85(4) 6.0(0) -

Kor.-Cz.-Jap. 1.00(0) 10.0(0) 0.99(0) 24.4(2) 1.0(0) 21.0(0)

3. ALIGNMENT OF UNESCO EDUCATIONAL SYSTEMS

To demonstrate and evaluate our proposed model, we analyze a UN-
ESCO dataset of educational systems.

Data: The datasets employed represents educational systems of Re-
public of Korea (Korea), Czech Republic (Czech), and Japan, which
are available from the UNESCO Institute of Statistics (UIS) web-
site1. The datasets consist of 55, 60 and 54 educational concepts
respectively in Korea, Czech and Japan, and their 127 standard-
ized features pre-defined by UIS in accordance with International
Standard Classification of Education (ISCED). Fig. 2.a overviews
distributions of educational concepts (K1-K55, C1-C60, J1-J54) in
the six ISCED levels starting from pre-primary to tertiary education.
Features other than the ISCED levels are for example program ori-
entations, entrance requirements, starting age, cumulative duration,
qualifications etc. Some of these features can be seen in the “shared
features” columns of Fig. 2.b. Based on these data we create binary
concept-features matrices for the three systems.

Results: We analyzed each system separately, two systems at a
time, and all three systems jointly. In our analysis we ran the sam-
pler ten times initialized differently both in terms of initial number
of components and the order in which the modes were updated. We
extracted from each run the sample with highest value of the joint-
distribution and evaluated the number of components as well as nor-
malized mutual information (NMI) between the ten runs. A NMI
of 1 would indicate perfect correspondences between the extracted
groups across runs. These results are given in Table 1. From the
table it can be seen that the highest likelihood solution was very re-
liably identified when analyzing all three systems jointly as well as
Korea separately with NMI all above 0.99 whereas the structure in-
ferred when analyzing Czech and Japan jointly was the least stable
with NMI of 0.94 and 0.85 for the two systems respectively.

In the following we display representative results obtained us-
ing a single run. Fig. 3.a illustrates the single system modeling
(i.e., unipartite clustering) of the three educational systems. The
graphs overview the statistically extracted structures in all types of
binary matches for each single system and especially demonstrate
that the Korean system has clear structure with relatively uniform
clusters. The similar phenomenon is observable from the results of
the Japanese system although the structures are slightly blurred com-
pared to the Korean structures. Fig. 3.a reveals that more features

1http://www.uis.unesco.org/education/ISCEDmappings/Pages/default.aspx

11 clusters shared features 10 clusters shared features 12 clusters shared features

JU5 J35, J37, J44, J45, J46 ISCED5

JU8 J1, J2, J3 ISCED0, duration 1-3

CU9 C53, C54, C57 certification 

JU12 J53, J54 certification, duration.1+

KU8 K3,  K4,  K5 ISCED1,  starting age:6
KU9 K25,  K27,  K42 ISCED5
KU10 K1,  K2 ISCED0,  start age: 3-5

6 (x 16) clusters Unipartite elements 12 (x 6) clusters Unipartite elements 9 (x 14) clusters Unipartite elements

C4, C5, C6, C7, C8, C51 part of CU3

K51, K52, K53, K54, K55 KU4
K6, K7, K8, K9, K10 KU5 C31, C32, C34, C39, C41 part of CU2 and CU5 K6, K7, K8, K9, K10 KU5

K51, K52, K53, K54, K55 KU4 C1, C2, C3, C50 part of CU3 K22, K23, K24, K49 KU7
K3, K4, K5 KU8 C22, C23, C24, C26 part of CU2and CU6 K3, K4, K5 KU8
K21, K38 KU11 C53, C54, C57 CU9 K1, K2 KU10

C46, C49 part of CU7 K21, K38 KU11
16 (x 6) clusters Unipartite elements C33, C35 part of CU5 and CU7

C10 CU10 14 (x 9) clusters Unipartite elements

6 (x 12) clusters Unipartite elements

C4, C5, C6, C7, C8, C51 part of CU3

C55, C56, C58, C59, C60 part of CU4
C1, C2, C3, C50 part of CU3 J4, J5, J53, J54 Merger of JU11, JU12
C53, C54, C57 CU9
C22, C23, C24 part of CU2, CU6
C10, C34, C39 CU10, part of CU2, CU5 J35, J36, J37 part of JU5, JU7
C27, C30, C38 part of CU1, CU6 J35, J37, J44, J45, J46 JU5 J6, J7, J8 JU10

C26, C37 part of CU6 J1 J2 J3, J36 JU8, JU7 (J36) J1, J2, J3 JU8
C42, C44 part of CU8 J4, J5, J53, J54 JU11, JU12 J41, J42, J44 part of JU3, JU5
C33, C35 part of CU5, CU7 J50, J51., J52 JU9

C52 part of CU4 J43, J49 part of JU7, JU3
C46 part of CU7 J47, J48 part of JU3, JU5
C49 part of CU7 J45, J46 part of JU5

J38 part of JU3, JU5

Korean clusters

ISCED3,  require:2,
cumulative duration: 12,

starting age:15 etc.

K35,  K36,  K37,  K43,
K44,  K45,  K46,  K47

adults:Y/N, part-
time:Y/N, certification 

(ISCED3/4,
orientation:G/V/P)

K11, K12, K13, K14

Master,  ISCED5,
require:5A(1st),  cum. 

duration:18,
orientation:V etc.

K21, K38 ISCED5,  cumulative 
ducation: 14-15

C52, C55, C56, C58, C59, 
C60

C33, C39, C40, C41, C43, 
C45

K26,  K28,  K29,  K30,
K31,  K32,  K33,  K34,
K39,  K40,  K41,  K48,

K50

Bachelor,  ISCED5,
require:3A,  cumulative 

duration:16 etc.

K15,  K16,  K17,  K18,
K19,  K20

Master,  ISCED5,
require:5A(1st),  cum. 

duration:18,
orientation:G etc.

K6,  K7,  K8,  K9,  K10
ISCED2,  starting 
age:12,  require:1,

cumulative duration:9

PhD,  ISCED6,
require:5A(2nd)

cumulative duration:21+

K51,  K52,  K53,  K54,
K55 CU5

CU6

CU7

CU10

Japanese clusters

J4, J5 ISCED1, cumulative 
duration:6

ISCED5, adults:N, part-
time:N

J30, J31, J32, J33, J34 ISCED4, duration:1+, 
start age:18

J36, J39, J40, J43 ISCED5,
certification/diploma

J50, J51, J52 ISCED6,
require:5A(2nd)

J38, J41, J42, J47, J48, 
J49

ISCED3, destination:C, 
orientation:V etc.J17, J24, J27, J29

part of CU6 and CU2

C9, C12, C14, C15, C16, 
C17, C18, C19, C20 part of CU1 

C52, C55, C56, C58, C59, 
C60 CU4

K35, K36, K37, K43, 
K44, K45, K46, K47 KU2

Korean  (x Czech) Czech (x Japan) Korean (x Japan)

K1, K2, K22, K23, K24, 
K25, K26, K27, K28, 
K29, K30, K31, K32, 
K33, K34, K35, K36, 
K37, K39, K40, K41, 
K42, K43, K44, K45, 

K46, K47, K48, K49, K50

Merger of KU1, KU2, 
KU7, KU9, KU10

K11, K12, K13, K14, 
K15, K16, K17, K18, 

K19, K20
Merger of KU3, KU6

J6, J7, J8, J30, J31, J32, 
J33, J34 Merger of JU4, JU10

J17, J24, J27, J28 majority of JU6 and part 
of JU1

J9, J10, J11, J12, J13, J14, 
J15, J16, J17, J18, J19, 
J20, J21, J22, J23, J24, 
J25, J26, J27, J28, J29

Merger of JU1, JU2, JU6

J38, J39, J40, J41, J42, 
J43, J47, J48, J49, J50, 

J51, J52

JU3, JU9, JU7 (J39, J40, 
J43)

J9, J10, J12, J13, J14, J18, 
J19, J20, J21, J22, J25, 

J26

majority of JU1 and part 
of JU2

JU4 and part of JU7J30, J31, J32, J33, J34, 
J39, J40

part of JU2 and JU6

C40, C41, C43, C45, C47, 
C48 part of CU5, CU7, CU8

J11, J15, J16, J23, J29

Czech (x Korea)

Japan (x Czech)

Japan (x Korean)
C11, C13, C21, C25, C28, 

C29, C31, C32, C36

Clust
er ID

JU3

JU4

Clust
er ID

CU2

ISCED3, duration:3, start 
age:15, require:2, 

cumulative duration:12

J9, J12, J14, J18, J20, J22, 
J25, J26, J28JU1

ISCED3, duration:3+, 
start age:15, require:2, 

cumulative duration:12+

J10, J11, J13, J15, J16, 
J19, J21, J23JU2

C1, C2, C3, C4, C5, C6, 
C7, C8, C50, C51CU3

ISCED5, orientation:A, 
adults, part-time

CU4

KU5

KU6

KU11

Clust
er ID

KU1

KU3

KU2

KU4

Czech clusters

part-time

ISCED2, destination:C, 
orientation:P

adults:Y/N, part-
time:Y/N (ISCED4/5)

C11, C13, C22, C26, C30, 
C37

certification
(ISCED2/3/4)

C35, C46, C48, C49 adults, part-time 
(ISCED4/5/6)

C21, C23, C24, C25, C28, 
C29, C31, C32, C34, C36

Associate degree,
ISCED5,  destination:B,
cumulative duration:14

K22,  K23,  K24,  K49KU7

adults:N, part-time:N, 
certification (ISCED2/3, 

orientation:G/P)

C9, C12, C14, C15, C16, 
C17, C18, C19, C20, C27, 

C38
CU1

certification, adults:N, 
part-time:N (start 

age:3/6/15, ISCED0/1/N)

JU6

ISCED2, destination:A, 
cumulative duration:9J6, J7, J8JU10

K25, K26, K27, K28, 
K29, K30, K31, K32, 
K33, K34, K39, K40, 
K41, K42, K48, K50

Merger of KU1, KU9

K11, K12, K13, K14, 
K15, K16, K17, K18, 

K19, K20
Merger of KU3, KU6

CU8

JU7

JU9

JU11

 C42, C44, C47

C9, C12, C14, C15, C16, 
C17, C18, C19, C20, C27, 

C30, C37, C38
CU1 and part of CU6

part of CU6, CU2C11, C13, C21, C25, C28, 
C29, C36

C40, C42, C43, C44, C45, 
C47, C48

CU8 and part of CU5, 
CU7

C10

2-b: Unipartite  clustering assignments

2-c: Bipartite  clustering assignments

2-a: Educational concepts 
and their ISCED levels

ISCED 0 ISCED 1 ISCED 2 ISCED 3 ISCED 4 ISCED 5 ISCED 6 NC

Pre-primary Primary
Lower 

secondary
Upper 

secondary

Post-
secondary,     

Non-tertieary

Tertiary       
(1. stage)

Tertieary      
(2. stage)

Korea K1-2 K3-5 K6-10 K11-20 K21-50 K51-56
Czech C1-3 C4-8 C9-18 C19-29 C30-37 C38--48 C49 C50-60
Japan J1-3 J4-5 J6-8 J9-29 J30-34 J35-49 J50-52 J53-54

Fig. 2: a: Overview of distributions of educational concepts classi-

fied based on the pre-defined ISCED levels. b: The unipartite clus-

tering solution partitions educational concepts in the respective sys-

tems into clusters and what features are commonly shared among the

members of the obtained clusters. c: Members of clusters restruc-

tured by the bipartite clustering solution. The “unipartite elements”

columns indicate how the members of the unipartite clusters are re-

organized when two educational systems are aligned.

are shared among members of each cluster in the Korean system
as red color dominates in 1–1 matches, but also identifies relations
across extracted clusters (e.g. KU1 and KU9). The shared features
listed in Fig. 2.b show that the partitions of both the Korean- and
the Japanese systems are primarily influenced by the classification
of the ISCED levels, while the Czech system is strongly influenced
by other criteria, e.g. whether an educational concept is targeted
for adult education/part-time education or not. Accordingly the ex-
tracted clusters in the Czech system consist of members belonging
to several ISCED levels. In addition, the graph drawn by the Jaccard
similarities within Czech system fails to identify some of the cluster
structures observable in the graph of the 1–1 matches.

In Fig. 3.b, the bipartite clustering of our framework aligns two
of the educational systems in three combinations (i.e. Korea-Czech,
Korea-Japan, Czech-Japan). The graphs indicate that Korea-Japan



0-0 matches 0-1 matches 1-0 matches 1-1 matches Jaccard Coefficient Simple Matching Coefficient
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3-a: Unipartite clustering (single knowledge structure)

K
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3-b: Bipartite clustering (alignment of two knowledge structures)

Fig. 3: a: Results of the unipartite clustering of the three single educational systems from top to the bottom: Korea; Czech; Japan. The graphs

from the first to the fourth columns depict structures in each of the four types of binary matches (i.e., 0–0, 0–1, 1–0 and 1–1). The graphs

of the fifth and the sixth columns are drawn based on similarity scores (Jaccard and SMC) between all combinations of educational concepts

within each single system, which are reorganized according to the extracted clusters. The structures of the 1-1 and 0-0 matches are relatively

identical to the Jaccard and SMC structures. Our framework additionally provides structural information supported by all types of binary

matches. Members of the extracted clusters and features shared among the cluster members are listed in Fig. 2-b. b: Bipartite clusterings

of two educational systems: Korea-Czech; Korea-Japan; Czech-Japan. The graphs indicate how the original structures in all types of binary

matches of each single system influence on the alignment of the two systems.

bipartite clustering has clearer structures in 1-1 matches than the
other two combinations, as the structures in the two systems are
integrated based on e.g. the ISCED levels (the classification crite-
ria influencing on the Korean- and the Japanese unipartite cluster-
ings). Another important finding is that the influence of the original
unipartite structures is revealed in the bipartite clusterings. Fig. 2.c
shows how the original unipartite clusters are merged or split when
the two systems are aligned. For example, when the Korean sys-
tem is aligned with the Czech system, some of the unipartite Korean
clusters (KUs) are merged into one cluster, otherwise the same KUs
remain as they are identified by unipartite solution. On the other
hand, the majority of the unipartite Czech clusters (CUs) are split
into several smaller groups and some of these groups are merged
into one as a new cluster in Fig. 2.c, influenced by the unipartite Ko-
rean clusters clearly partitioned by e.g the ISCED levels. This phe-
nomenon is supported by the graphs of 1–0 and 0–1 matches in the
Korea-Czech alignment in Fig. 3.b where the Czech specific feature
structures (0–1 matches) have more fine-grained stronger structures
than the Korean specific feature structures (1–0 matches) with coarse
weaker structures.

As outlined in Fig. 5, the 3-way clustering here identifies 10 Ko-

rean clusters (KT1-10), 25 Czech clusters (CT1-25) and 21 Japanese
clusters (JT1-21). As the Korean system has the clearer and sim-
pler unipartite partitions according to the ISCED levels and has the
coarse and weaker structures in the (1–0 matches) of the bipartite
clusterings in Fig. 3.b, the number of KTs obtained are substantially
fewer than the other two systems. The extracted clusters are fine-
grained and generally well-separated, i.e. similar types of educa-
tional concepts are grouped together without irrelevant concepts. For
example, the tables at the top of Fig. 4 lists feature vectors of clus-
ter members indicating stronger interactions with the second Korean
cluster (KT2). More specifically, the KT2 cluster has stronger inter-
actions with CT11, CT13, CT21 as well as JT10, JT11, JT16 in “K-
C-0” and “K-0-J” matches. The list of feature vectors demonstrate
that the second Korean cluster (KT2) consists of educational con-
cepts at the level of ISCED 5 providing Master degree and almost all
eight members of KT2 possess uniform features. On the other hand,
CT11, CT13, CT21 as well as JT10, JT11, JT16, all of which belong
to the ISCED5 level, are divided into several sub-clusters based on
different classification dimensions such as part-time, adult, degree
etc. This implies that the KT2 is aligned with several CTs in the “K-
C-0” matches and with several JTs in the “K-0-J” matches. In this
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K35 ISCED:5 destination:B ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K36 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K37 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K43 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K44 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K45 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K46 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
K47 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No

C47 ISCED:5 destination:A ISCED5:Long/verylong degree:2rd/3rd + ISCEDrequirement:5A diploma startingage:24+ duration:1+ cumulativeduration:19+ workbased:No adults:yes parttime:yes
C48 ISCED:5 destination:A ISCED5:Long/verylong degree:2nd/3rd ISCEDrequirement:5A(2nd) JurisDoctor startingage:24 duration:1 cumulativeduration:19 workbased:No adults:Yes parttime:Yes
C43 ISCED:5 destination:A ISCED5:Long degree:1st ISCEDrequirement:3A,4A Bachelor startingage:19 duration:5 cumulativeduration:18 workbased:No adults:Yes/No parttime:Yes/No
C45 ISCED:5 destination:A ISCED5:Long degree:1st ISCEDrequirement:3A,4A Doctor startingage:19 duration:6 cumulativeduration:19 workbased:No adults:Yes/No parttime:Yes/No

CT21 C44 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Bachelor startingage:22 duration:2–3 cumulativeduration:18 workbased:No adults:Yes/No parttime:Yes/No

J47 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
J48 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2 cumulativeduration:18 workbased:No adults:No parttime:No
J45 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2+ cumulativeduration:18+ workbased:No adults:No parttime:Yes
J46 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master Master startingage:22 duration:2+ cumulativeduration:18+ workbased:No adults:No parttime:Yes
J43 ISCED:5 destination:A ISCED5:Long degree:Intermediate ISCEDrequirement:5A(1st) Certification startingage:22 duration:1+ cumulativeduration:17+ workbased:No adults:No parttime:No
J49 ISCED:5 destination:A ISCED5:Long degree:2nd ISCEDrequirement:5A(1st) tertiary:Master JurisDoctor startingage:22 duration:3 cumulativeduration:19 workbased:No adults:No parttime:No

JT16

KT2

CT11

CT13

JT10

JT11

Fig. 4: Feature vectors of cluster members that indicate stronger interactions with the second Korean cluster (KT2).

way, the one-to-many cluster relations between KT vs. CTs or JTs
are extracted. Among these interactions, KT2, CT21 and JT10/JT11
are the interactions where all three systems simultaneously interact
with each other (K-C-J matches). To sum up, the 3-way clustering
jointly models all 8 types of binary matches and identifies structures
of interactions among the obtained clusters within and across the
three systems.

4. CONCLUDING REMARKS AND FUTURE WORKS

Alignment and structuring of one or more knowledge systems usu-
ally requires similarity computations between objects belonging to
the respective knowledge systems. As pointed out in [10, 19], the
selection of a similarity measure influences heavily on the perfor-
mance of the knowledge alignment and (re-)structuring when em-
ploying a co-clustering algorithm based on dense relational model-
ing [20]. The recent trend of ontological similarity measures extends
Tversky’s Ratio model by integrating fuzzy set representations and
information content of a concept based on information theory [2].
These types of new similarity measures are theoretically relevant to
the alignment and structuring of knowledge. A question is how our
proposed framework is positioned in contrast to such recent progress
in knowledge alignment and structuring. One argument is that our
proposed framework enables the visual inspection of the overall fea-
ture structures while aligning and extracting knowledge structures at
the level of statistical support. Perhaps, the most unique notewor-
thy argument is that our framework enables the simultaneous align-
ment of three or more knowledge systems since the framework is not
restricted to the similarity computation between two objects. The
contrastive analysis of the unipartite, bipartite and tripartite cluster-
ings demonstrated that the rather abstract cluster like KT2 in the uni-
formly structured Korean system is aligned with several fine-grained
clusters (i.e. subsumed clusters) in the opposed systems. This in-
dicates that our framework enables the identification of latent onto-
logical structures within and across the systems. Thus, one of our
future challenges is to develop hierarchical ontologies linked within
and across the three systems to facilitate interpretation.

Another issue to be considered is that we have in our experi-
ment employed small datasets organized by taxonomic information.
A question is the applicability of our framework to different types
of datasets, i.e. from strictly structured ontologies to sparse and un-
structured large datasets where model inference will be substantially
more challenging. In addition, we need to investigate objective eval-
uation criteria of the results, which has been considered outside the
scope of this paper. A noteworthy remark is that our unipartite so-
lution enables to assess whether an input dataset is structured or un-
structured as shown in our experiment. This information itself is
useful when two or more datasets are to be aligned afterwards. Such

additional functionality can also be assessed when testing the appli-
cability of our framework with different types of datasets.
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Fig. 5: 3-way clustering of the three educational systems (Korea-Czech-Japan). The graphs overview how the 10 Korean clusters (the number

of matches are averaged among members of each cluster) interact with the other two systems. The 10 rows from the top to the bottom refer

to the Korean clusters from KT1 to KT10, and the 8 columns from the left to the right refer to 111, 011, 101, 110, 100, 010, 001, and 000

matches. For convenience, these combinations are denoted as [KCJ, 0CJ, K0J, KC0, K00, 0C0, 00J, 000] in order to specify which systems

interact with each other.


