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ABSTRACT

Spectroscopic analysis relies on identifying and understand-
ing the spectral peaks that represent unique characteristics of
an analyte. In high-speed real-time settings, current peak
fitting techniques, particularly Bayesian methods involving
MCMC or variational approximation, can be prohibitively ex-
pensive. We propose an unsupervised method using a convo-
lutional neural network to estimate the number of peaks and
their parameters along with posterior uncertainty, by amortiz-
ing variational inference in a classical parametric peak model.
In a simulated data study, our method reliably determines the
number of peaks, precisely estimates parameters similar to di-
rect variational inference, and accurately captures uncertainty
comparable to MCMC methods. Our novel, fast, and precise
method for Bayesian spectral analysis opens new possibilities
in real-time spectral data processing for high-speed monitor-
ing and control.

Index Terms— Spectroscopy, GFlowNet, Variational au-
toencoder, Amortized inference

1. INTRODUCTION

An essential task in chemical science is determining the com-
ponents and relative quantities of a compound analyte. This
task is often achieved by spectroscopy, such as infrared (IR),
near-infrared (NIR), or Raman [1]. These techniques work
by irradiating the analyte and measuring the electromagnetic
spectrum that results from the interaction. Identification and
quantitation is typically based on the locations and intensities
of one or more characteristic spectral peaks.

In a typical signal processing pipeline, a peak model is
fitted to the observed spectrum using e.g. least squares or
other statistical techniques such as Markov chain Monte Carlo
(MCMC) [2, 3] or variational Bayes. As part of the fitting
process, the number of peaks must also be estimated: Often,
this parameter is either assumed to be known, or set to a suf-
ficiently high value such that all relevant peaks are extracted.

Thank you to the Independent Research Fund Denmark [grant no. 9131-
00039B] for funding this work and to NVIDIA for supplying GPU’s for com-
putations.

As an alternative to extracting peak parameters, the problem
can be stated as an unmixing problem, and the unmixed com-
ponents can then be matched to a known database [4]; how-
ever, this approach does not directly result in interpretable
peak parameters.

In many use cases, uncertainty information about the peak
parameters is of critical importance, for example, when study-
ing chemical components at low concentrations or phenom-
ena which give rise to minuscule peak shifts. Parameter un-
certainty can be estimated in several ways, including tradi-
tional confidence intervals or by formulating the model in the
Bayesian framework. In all cases, estimates are most often
obtained using iterative methods such as gradient-based op-
timization, Markov chain Monte Carlo (MCMC), or stochas-
tic variational inference (SVI); however, these methods are
somewhat slow at inference time and might not be practical
in time-sensitive applications, such as monitoring of in vivo
drug delivery or control of chemical reaction processes.

1.1. Contributions

In this work, we seek to address these challenges: We propose
a fully amortized Bayesian inference model that is faster than
traditional inference methods at inference time, which can re-
liably estimate the number of components, and which can be
trained in an unsupervised setting.

Based on a classical parametric peak model, we use the
SVI framework for approximate Bayesian inference. We
amortize the inference as an iterative peak-picking procedure
by fitting a neural network inference model which outputs
the approximate posterior parameters of one peak at a time
as well as the probability that all peaks have been identified.
Our work extends existing iterative peak-fitting procedures by
combining ideas from generative flow networks (GFlowNets),
stochastic variational inference (SVI), and variational autoen-
coders (VAE). Our approach is essentially a VAE with the
parametric peak model as the decoder and the peak parame-
ters as the latent space; however, since we learn the number
of components in a sequential procedure and the dimension-
ality of the latent space thus varies, the encoder is similar
to a GFlowNet. As in other VAEs with discrete latent com-
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ponents, we use a Gumbel-softmax relaxation to construct a
differentiable loss. In the following, we briefly review these
techniques before we describe the details of our approach.

1.2. Background

Iterative peak picking: Our approach is most similar to the
iterative peak picking algorithm of Park et al. [5], in which a
convolutional neural network (CNN) is trained to estimate the
number of peaks as well as the parameters of the single peak
with the largest area. The trained network is then used to ex-
tract multiple peaks by sequentially estimating the strongest
peak, subtracting it out, and running the algorithm again on
the residual until the estimated number of peaks is zero. To
improve the quality of the fit, an iterative optimization tech-
nique is subsequently used to finetune it. Since the training
objective is supervised, the method requires access to a large
number of spectra with annotated peak parameters.

GFlowNet: Inspired by reinforcement learning, in a
GFlowNet [6], a stochastic policy is trained to sequentially
generate discrete composite data, such that the probability
of each datum is proportional to a given reward function
(an unnormalized probability). A GFlowNet is structured
as a directed acyclic graph (DAG) with a unique source
state s0. Data objects are constructed by taking a sequence
of actions following the stochastic policy PF (sk|sk−1;ϕ),
until a terminating state is reached, forming a trajectory
τ = (s0, s1, . . . , sK). Each internal state has an associated
backward policy PB(sk−1|sk;ϕ) characterizing the proba-
bility that a given state sk is reached from each of its parent
states. Rewards at the terminal states constitute an out-flow of
unnormalized probability, and since multiple distinctive paths
can generate identical outputs, GFlowNet objectives seek to
match the input and output flows at each intermediate node
or by balancing flow trajectories.

Given a reward functionR(x) for terminal states x, a pop-
ular training objective is trajectory balance [7],

B =

(
log

Zϕ
∏K
k=1 PF (sk|sk−1;ϕ)

R(sK)
∏K
k=1 PB(sk−1|sk;ϕ)

)2

. (1)

With Zϕ denoting the total flow, this objective states that the
flow on a given trajectory from s0 to sK (numerator) should
match the fraction of the reward that is attributed to that tra-
jectory (denominator). Minimizing this objective with respect
to the parameters ϕ results in a stochastic policy PF that gen-
erates samples (reaches terminating states) with probability
proportional to the reward.

Stochastic variational inference: SVI [8] is an ap-
proximate Bayesian method where the posterior distribution
p(θ|x) is approximated by a tractable distribution qϕ(θ) with
parameters ϕ by minimizing their Kullback-Leibler diver-

gence,

L = KL
(
qϕ(θ)∥p(θ|x)

)
(2)

= −Eqϕ
(
log

p(θ,x)

qϕ(θ)

)
︸ ︷︷ ︸

ELBO

+ log p(x) (3)

or equivalently maximizing the evidence lower bound (ELBO).
The objective is minimized using stochastic gradient descent,
where gradients are typically approximated using a single
sample Monte Carlo estimate θ∗ ∼ qϕ(θ), either using vari-
ants of the score function estimator [9] (a.k.a. REINFORCE)

∇ϕL ≈ log
p(θ∗,x)

qϕ(θ∗)
∇ϕ log qϕ(θ

∗) (4)

or the pathwise estimator [10, 9] (a.k.a the reparametrization
trick)

∇ϕL ≈ ∇ϕ log
p(gϕ(ξ

∗),x)

qϕ(gϕ(ξ∗))
. (5)

Here, θ∗ = gϕ(ξ
∗) is a differentiable sampling path and ξ∗ ∼

p(ξ) is an auxillary random variable. For example, if θ ∼
N (µ, σ2) we can have g(ξ) = σ · ξ + µ with ξ ∼ N (0, 1).

In the auto-encoding variational Bayes setting, a condi-
tional inference model qψ(θ|x) is used to approximate the
posterior distribution. The inference model is typically cho-
sen as a neural network with parameters ψ which takes the
data as input and outputs parameters ϕ for the posterior ap-
proximation. Rather than having to fit the posterior approx-
imation for each observation, the cost of inference is thus
amortized in the training of the neural inference model.

Gumbel softmax: Pathwise gradient estimation is not di-
rectly applicable to discrete variables; however, the Gumbel-
softmax can be used as a differentiable approximation [11]. In
the case of a Bernoulli(π) variable, softmax relaxed samples
π̃ ∈ [0, 1] can be generated as

π̃ =
(
1 + exp

[
− T

(
ℓ+ log π

1−π
)])−1

(6)

where T is a temperature that controls how close the sam-
pled variables are to being discrete and ℓ is a standard logistic
random variable or, equivalently, the difference between two
independent standard Gumbel variables.

2. METHODS

2.1. Pseudo-Voigt spectral model

A spectrum can be represented as a non-negative vector, x ∈
RW+ of dimensionality W , which is the number of measured
wavenumbers. Spectral models typically capture signal peaks
of a given parametric form, and in some cases, baselines and
other artifacts as well. We assume an additive noise model,

x = f(θ) + ϵ (7)
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Fig. 1. Illustration of a noise-free spectrum with three peaks.

where θ are model parameters and ϵ ∼ N (0, σ2). We employ
a K-peak pseudo-Voigt signal model,

f(θ) = α⊤V (c,γ,η), (8)

where α ∈ RK+ is a vector with individual peak amplitudes as
its components αk, and V (c,γ,η) ∈ RK×W

+ is the so-called
height-normalized K-peak pseudo-Voigt function evaluated
at all observed wavenumbers ω,

V (c,γ,η) = η
1

1+([ω−c]/γ)2︸ ︷︷ ︸
Lorentzian

+(1−η) exp

[
− (ω − c)2

2γ2

]
︸ ︷︷ ︸

Gaussian

,

where all operations are element-wise. Here, c ∈ RK+ are
the positions, γ ∈ RK+ are the full-width-at-half-maximum,
and η ∈ [0, 1]K are the Lorentzianities (shapes) of the K
peaks, with components denoted by ck, γk, and ηk respec-
tively. Thus, the set of model parameters are θ = θ1:K =
{θ1, . . . ,θK} where θk = {αk, ck, γk, ηk}. An illustrative
example of a noise-free spectrum is given in Fig. 1. With this
model, the likelihood is given as p(x|θ) = N (x|f(θ), σ2I)
and the joint p(θ,x) is found by multiplying with appropriate
priors p(θ).

2.2. Stochastic variational inference

As a variational approximation, we adopt a mean field family
for each peak given by

qϕk(θk) = q(αk)q(ck)q(γk)q(ηk), (9)
q(αk) = N (αk|, µαk, σ2

αk), q(ck) = N (ck|µck, σ2
ck),

q(γk) = N (γk|µγk, σ2
γk), q(ηk) = B(ηk|aηk, bηk),

where N and B are univariate normal and beta distributions,
such that we have

qϕ(θ) =

K∏
k=1

qϕk(θk). (10)

SVI entails minimizing the loss in Eq. 2 with respect to the
variational parameters ϕ = {ϕ1, . . . , ϕK},

ϕk = {µαk, σ2
αk, µck, σ

2
ck, µγk, σ

2
γk, aηk, bηk},

with the number of components K assumed known. Non-
negativity constraints on variance and shape parameters are
easily implemented as unconstrained optimization on the log-
transformed parameters.

2.3. Amortized inference

There are two major drawbacks of the described SVI ap-
proach: 1) The number of components K needs to be spec-
ified or estimated separately, and 2) the method requires
running an iterative optimization procedure, which might be
prohibitively slow in a real-time setting.

We propose an amortized procedure that alleviates both
problems: The idea is to utilize a construction similar to a
GFlowNet as a conditional inference model. We let the initial
state s0 denote an “empty” model and design the stochastic
policy PF such that it either adds a single pseudo-Voigt peak
or terminates. Mimicking the trajectory balance criterion in
Eq. (1), we write

qψ(θ|x) = πK(ψ,xK)·
K∏
k=1

PF (sk|sk−1;ψ,xk−1) · πk−1(ψ,xk−1)

PB(sk−1|sk)
, (11)

where πk denotes the probability of terminating at step k. The
policy is conditioned on xk−1, which denotes the residual
at step k with x0 = x. The forward policy and termina-
tion probability are constructed as a neural network xk−1 →
{ϕk, πk}, which inputs a residual and output parameters of
the variational family in Eq. (9) as well as the termination
probability. Finally, we assign equal weight to all parents in
the backward policy,

PB(sk−1|sk) =
1

(k + 1)!
. (12)

In a full sequential forward pass, we first input the spec-
trum to the neural network yielding a variational distribution
for a single peak and a stopping probability. We sample the
Bernoulli stop variable, and if it is false, we sample the peak
parameters and subtract the peak from the signal to yield the
first residual. We then repeat the process using the residual
as input, and continue until the sampled stop variable is true.
The process is illustrated in Fig. 2.

To train the neural network, we use pathwise gradient
estimates; however, since the sampling path for discrete
variables is not differentiable, we relax samples from the
Bernoulli variables πk with the Gumbel-softmax. We then
compute the loss as a weighted average of the joint target dis-
tribution. Let Lk = log p(θ0:k,x) denote the unnormalized
log-posterior of a model containing the first k components.
We relax the target in the ELBO as

log p(θ,x) ≈
Kmax∑
k=0

ρkLk, (13)

with weights

ρk = π̃k

k−1∏
i=0

(1− π̃i), (14)
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Fig. 2. Example of the iterative peak picking procedure orig-
inally suggested by [5] with three components. Components
are sequentially subtracted from the signal, yielding a resid-
ual xk, until no more components are estimated.

Fig. 3. The relaxation of the stopping variable π̃ requires a
weighting of each possible state in the model with the relaxed
variable. While in theory, this could continue infinitely, in
practice we set a maximum number of allowed components,
Kmax after which the component generation procedure stops,
regardless of πK−1

and relax the log-variational distribution similarly. The pro-
cedure is schematically illustrated in Fig. 3.

The final loss is the relaxed negative ELBO,

L = −Eqψ

[
Kmax∑
k=0

ρk log
p(θ0:k,x)

qϕ(θ0:k|x)

]
(15)

which we optimize using the single sample pathwise gradient
estimator.

3. EXPERIMENTS

We demonstrate our method on a simulated data problem.
Our primary purpose is to compare the amortized approach
to direct SVI in terms of how well peak parameters and pos-
terior uncertainties are estimated. For the latter, we further
benchmark against MCMC initialized at ground truth.

3.1. Experimental settings

Data generation: Spectra were simulated according to
Eq. 7 using integer wavenumbers ω = 0, . . . , 499, K ∼

U(0, 4) peaks located at c ∼ U(0, 499) with amplitude
αk ∼ U(0.2, 0.8), width γk ∼ U(5, 15), and Lorentzianity
η ∼ U(0, 1), where U and U denote discrete and continuous
uniform distributions. The locations and amplitudes of peaks
were further constrained to be separated by at least 50 and
0.2 units, respectively, to avoid strong overlap/symmetry. We
used a noise variance of σ2 = 0.012.
Model settings: In all experiments we used flat, improper
priors, p(θ) ∝ 1. We used a temperature of T = 1 for
the Gumbel-softmax relaxation, and the maximum number of
components was set to Kmax = 4.
Training and test: As a common test set used across all set-
tings, we generated 1000 random spectra. SVI and MCMC
were run directly on the test set, and as training data for the
amortized method, we generated data on the fly.
SVI training: SVI was trained with 100 000 iterations of the
ADAM optimizer with a learning rate of 10−3, β1 = 0.9,
and β2 = 0.999. All variables were transformed by either
a log transformation or a sigmoid transformation to an un-
constrained optimization problem using the mean field varia-
tional approximation in Eq. (10).
MCMC reference: We ran MCMC on the test set initialized
with the ground truth parameters, using a Metropolis-within-
Gibbs procedure [2] with acceptance rates tuned to around
25% on a pilot run. We ran 100 000 update sweeps for each
spectrum and used the entire chain to compute statistics.
Neural network architecture: For the amortized model, we
used a neural network consisting of a) a 1D-convolutional
layer with kernel size 100, 128 output channels, and tanh-
activation, b) a 1D-convolutional layer with kernel size 1, 128
output channels, and tanh-activation, c) flattening followed by
a linear layer with 128 output channels and tanh-activation,
and finally d) a linear layer with 9 output channels. The first
eight outputs correspond to distribution parameters for loca-
tion, amplitude, width, and Lorentzianity, and the ninth output
is the stop probability. A sigmoid or exponential function was
applied to each output to map it onto a suitable domain (see
code for details).
Amortized training: The neural network was trained using
the Adam optimizer for 2M steps with batch size 256 and a
triangular cyclic learning rate between 10−4 and 10−6 with a
period of 4 000 steps, followed by 1M steps with the learning
rates reduced by a factor 10.

3.2. Results

Model fit: Fig. 4 shows histograms of the achieved log-
likelihood using SVI and our amortized method. When SVI
does not fail, fits are close to optimal; however, in our ex-
periments, SVI failed in around 20% of the cases, but only
rarely when there is a single peak. We found empirically that
the majority of these failures are when one or more peaks
are completely missed in the fit. We note that the failure of
SVI is likely fixed by running multiple restarts with different
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initializations. Fits using the amortized method are slightly
worse but still very close to optimal, and the failure rate is
significantly lower, around 2%. A possible explanation for
the strong reduction of the failure rate could be that the neural
network, by providing a mapping from the data to variational
parameters, does not depend on any initialization and is thus
not sensitive to local minima in the loss. The number of peaks
also affects the amortized performance, which degrades with
the number of peaks.
Number of components: Fig. 5 shows a confusion matrix
for the number of components found by the amortized method
compared with ground truth. The correct number of compo-
nents was found in 99% of the cases, and in remaining cases
the number of components was over estimated by one.
Parameter estimation: Fig. 6 shows histograms of the abso-
lute error of the estimated components compared to ground
truth. With 1000 test spectra containing 2.5 peaks each on av-
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Fig. 6. Mean absolute error on peak parameters for SVI and
the amortized method.

erage, statistics are shown for each of the approx. 2 500 peaks.
Both SVI and our amortized method recover the parameters
very accurately in most cases (SVI is slightly better); how-
ever, large errors occur in substantially more cases in SVI.
Uncertainty: Fig. 7 shows the estimated standard deviations
of each fitted peak parameter using SVI and the amortized
approach, benchmarked against the MCMC ground truth. In
general, SVI and our amortized method are in almost per-
fect agreement with each other. On location, width, and
Lorentzianity, agreement with MCMC is very good, whereas
uncertainty on amplitudes appears to be slightly underesti-
mated for both methods (mean field variational methods are
known to often underestimate variance, so this is perhaps not
surprising).

4. CONCLUSION

Based on our findings, amortized variational inference ap-
pears to be an attractive method for fast and precise prob-
abilistic peak estimation in spectral data, given a sufficient
amount of training data. The experiments reported herein cor-
respond to a setting without strong noise, baselines, and con-
taminants, and further experiments are needed to determine
if the results carry over to more realistic settings. While we
have not conducted an exact timing experiment, we note that
the amortized method is more robust and orders of magni-
tudes faster than iterative fitting using SVI at inference time
while providing only slightly worse estimates. If needed, it
is possible to improve the amortized estimates by finetuning
with a small number of SVI updates.
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