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Abstract

Vibrational spectroscopy techniques enable accurate chemical detection and
quantification, but the extraction of spectral peak parameters is frequently ham-
pered by an underlying baseline. Because the signal and baseline are additive,
it is difficult to distinguish between signal peaks and baseline effects when the
baseline is not smooth. Using surface enhanced Raman spectroscopy (SERS)
and near-infrared (NIR) spectroscopy as examples, we show how to estimate the
signal and the baseline jointly while imposing a high-capacity non-stationary
Gaussian process on the baseline. This allows us to both obtain accurate esti-
mation and meaningful uncertainty estimates on interpretable peak parameters.
We demonstrate this on artificially generated SERS maps, a challenging real-
world SERS case, and a benchmark NIR dataset.

Keywords: Surface enhanced Raman spectroscopy, SERS, Near-infrared
spectroscopy, NIR, Gaussian processes, baseline correction, vibrational
spectroscopy, Markov chain Monte Carlo, MCMC

1. Introduction

A critical task in chemical science is determining the composition of unknown
compounds, a process known as fingerprinting. Vibrational spectroscopy is a
class of such fingerprinting techniques that works by measuring changes in the vi-
brational state of molecules in response to light interaction. Near-infrared spec-
troscopy (NIR), infrared spectroscopy (IR), and Raman spectroscopy (Siesler,
2016) are examples of vibrational techniques that can be used to detect, iden-
tify, or quantify chemical compounds in a substance. Irradiating the sample
and measuring the energy absorbed, transmitted, or inelastically scattered (de-
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pending on the technique) at a range of wavelengths yields a spectrum with a
pattern of spectral lines that characterize the molecular structure.

The detection procedure then entails identifying a distinctive set of spec-
tral features associated with the compound. The measured spectrum can be
compared to a library of known spectra to identify a compound among a set of
possibilities.
Typically, quantification is accomplished by obtaining a measure of peak inten-
sity, such as the magnitude of a specific mode or the area under one or more
characteristic spectral lines. A calibration curve can then be used to map these
numbers to a concentration. The requirement to precisely and reliably deter-
mine the location, magnitude, and width of the spectral lines is shared by all of
these tasks.

Spectral imaging is a popular acquisition method in which the sample is
measured in a spatial grid rather than at a single point. A spectral map has
several advantages over a single spectrum, including the ability to reduce noise
and unmix spectral information using multivariate statistical techniques (Tauler
et al., 1993). Furthermore, if the sample being analyzed is spatially inhomo-
geneous, having multiple spectra is extremely beneficial because each spectrum
can convey vastly different information. While multivariate statistical tech-
niques provide significant analysis benefits, they typically require additional
post-processing to extract important spectral characteristics such as peak loca-
tions.

This work is centered on spectral imaging, specifically surface enhanced Ra-
man spectroscopy (SERS), but the methods presented are general and easily
extendable to other types of vibrational spectroscopy. While the infrequent oc-
currence of inelastic scattering is a significant drawback of Raman scattering,
in SERS (Fleischmann et al., 1974; Jeanmaire and Van Duyne, 1977; Albrecht
and Creighton, 1977) the material of interest is adsorbed on a nano-structured
surface (hereafter referred to as a substrate) which locally amplifies the electri-
cal field and greatly increases the signal strength. Since its discovery, SERS has
been a popular analysis method at very low concentration levels.

Typical statistical analysis methods include multivariate curve resolution,
non-negative matrix factorization, and peak parameter fitting; however, these
methods commonly ignore uncertainty in measurements reflected in estimated
model parameters and can have difficulty identifying variation between samples
of the same material. Furthermore, SERS measurements are often contaminated
with an unknown baseline, making it difficult to extract the pure underlying Ra-
man signal. Many of the common analysis methods necessitate the removal of
such baseline, and because the signal and baseline are additive, inaccurate base-
line estimation introduces errors in the estimation of the SERS signal. When
the baseline is complex and not spatially uniform due to random variation across
the SERS map, it is particularly challenging to distinguish the signal from the
background, and suitable scattering correction is necessary.

The choice of baseline removal methods for spectroscopy are many, and
numerous work has been carried out in the last decades. A good overview of
the typical baseline removal procedure is given by Yang et al., where the pipeline
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is described as a three-step procedure, 1) smoothing, 2) baseline correction, 3)
peak picking (Yang et al., 2009). This pipeline shows there are significant choices
that need to be made. One can design the processing as three individual units,
or have an algorithm that estimates baseline and peak-picking jointly. Methods
that simultaneously estimate baselines and peaks started to receive attention in
the last ten years and can work with either methods that can learn to ignore
the baseline (Schmidt et al., 2019), or methods that explicitly model both the
baseline and peak identification (Picaud et al., 2018).

Turning the attention to more classical methods, where the baseline is con-
sidered without taking occurrences of peaks into account, a popular approach is
to fit a low-order polynomial model to the spectrum and use that as the baseline.
Here the experimenter needs to choose the order of the polynomial which can
have a high impact on the quality of the baseline estimation. (Gornushkin et al.,
2003). These methods are rudimentary and prone to estimating crucial parts
of the spectrum as part of the baseline. Other approaches that are more ro-
bust towards tuning of model parameters are based on asymmetric least squares
which ensures the baseline estimation matches the trend of the spectrum and
ignore peaks (Eilers, 2004). An improved method that innovates this idea is
adaptive iteratively reweighted penalized least squares (airPLS) (Zhang et al.,
2010), which can be used without any user input. The method works by iter-
atively changing the weights of the errors between the estimated baseline and
the original spectrum. Further reading on baseline removal methods is found
in (Yang et al., 2009; Li et al., 2020; Pan et al., 2022; Chen et al., 2023).

We propose an algorithm that performs simultaneous estimation of baseline
and parameters of the spectral characteristics while performing additive and
multiplicative scattering correction. The main contribution is a novel approach
to modeling the baseline using a non-stationary Gaussian process. This enables
the model to separately adapt the baseline model’s flexibility within and outside
of spectral regions with the target SERS signal, which significantly improves the
signal estimation compared with existing approaches. Because our method is
written in a Bayesian framework, posterior uncertainty is naturally provided for
all estimated signal parameters.

2. Methods and theory

Let X ∈ RN×W be the observed spectral map, where N = Nx · Ny is the
number of observed spectra and W is the number of observed wavenumbers
such that Xn,w is the measured intensity at wavenumber index w in spectrum
n (see Figure 1). We model the signal and baseline as additive, such that the
observed spectral map is given by

Xn,w = In,w + Ln,w + εn,w (1)

where I is our model for the underlying signal, L is our baseline model, and ε
is additive noise.
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Figure 1: A spectral map containing N = Nx · Ny spectra measured at W wavenumbers,
ω1, . . . ωW . A “slice” of the map is visualized as an image, and a “fibre” corresponding to
single spectrum is visualized as a line graph.

This additive model highlights a fundamental challenge with modeling spec-
tral maps: components of the observed data can equivalently be attributed to
the three model parts: signal, baseline, or noise. To separate and identify the
three parts, further constraints are necessary. In a Bayesian setting, such con-
straints are in the form of functional and distributional assumptions. Typically,
the spectral signal is modeled using a parametric peak model, the baseline fol-
lows a smooth and not too flexible model, for example a spline, and the noise
is assumed independent and Gaussian.

In this paper, we address a problem that arises frequently in practice when
the observed baseline is not sufficiently smooth. In that case, a more expressive
baseline model might be chosen; however, due to additivity, a more flexible base-
line will compete with the signal model to explain the observed data, resulting
in poorer estimates of the peak parameters. To address this problem, we pro-
pose using a very flexible non-parametric baseline model based on a Gaussian
process (GP), but limiting its flexibility by increasing smoothness around the
peak locations where the signal model is active.

To highlight the benefits of our locally smooth (non-stationary) GP baseline
model, we contrast it with the commonly used smooth B-spline background (Han
and Ram, 2020). In addition, we compare with a manually selected, locally
linear baseline (Göksel et al., 2021) as well as no baseline correction, while
keeping all other modeling choices the same.

2.1. Pseudo-Voigt spectral model
We model the spectral peaks using a pseudo-Voigt curve (Alstrøm et al.,

2017; Demtröder, 2014; Li and Dai, 2012), defined as a linear interpolation
between a Lorentzian and a Gaussian lineshape,

V (ω; c, γ, η) = η
1

1 +
(

ω−c
γ

)2
︸ ︷︷ ︸

L

+(1− η) exp

[
−1

2

(
ω − c

γ

)2
]

︸ ︷︷ ︸
G

(2)
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Figure 2: Pseudo-Voigt curve. The vertical lines shows the locations, ck, and horizontal lines
indicate the full width-at-half-maximums, 2γk.

where L and G are the Lorentzian and Gaussian lineshapes with location c and
scale γ, and evaluated at wavenumber ω. η ∈ [0, 1] denotes the Lorentzianity
of the curve, and informally determines its sharpness. This formulation of the
pseudo-Voigt curve is height-normalized to unity. Examples of such a curves can
be seen in Figure 2. In our setting, c denotes the position on the wavenumber
axis, and 2γ is the full width at half maximum (FWHM).

Since many analytes have multiple Raman peaks, we gather K pseudo-Voigt
curves in a matrix V ∈ RK×W with components

Vk,w = V (ωw; ck, γk, ηk). (3)

As mentioned previously, the enhancement of the SERS substrate is non-
uniform, and the analyte may be distributed unevenly across the substrate.
To model this, we introduce a set of spectrum and peak specific amplitude
parameters, αn,k, which gives us our full pseudo-Voigt spectral peak model,

In,w =

K∑
k=1

αn,kVk,w. (4)

Under this model, each spectrum in the map share peak locations and shapes,
but are allowed different peak amplitudes.

2.2. Baseline model
We assume that the shape of the baseline is shared across the SERS map,

and varies spatially only with a multiplicative scale, βn, and an additive bias,
κn. This gives a rank-1 baseline model,

Ln,w = βnBw + κn. (5)
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In case this assumption is too crude, it is straightforward to generalize to a
rank-P baseline model, where P baseline shapes are shared across the map with
individual scales and biases,

Ln,w =

P∑
p=1

βn,pBw,p + κn,p. (6)

This is relevant, for instance, when numerous separate contaminants contribute
to the baseline; nevertheless, we limit our exposition to P = 1, which we found
to be adequate in our practical setting.

2.3. Noise model
We assume that the observation noise is independent and identically Gaus-

sian,
εn,w ∼ N (0, τ−1), (7)

with mean zero and precision τ . While this assumption works well in most
practical situations, it is occasionally useful to extend it to handle e.g. shot
noise caused by external disturbances.

2.4. Full model
Combining the signal, baseline, and noise models yields full SERS model,

Xn,w =

K∑
k=1

αn,kVk,w︸ ︷︷ ︸
In,w

+βnBw + κn︸ ︷︷ ︸
Ln,w

+εn,w. (8)

Left is to define the baseline, B, specify prior distributions for the model param-
eters, and device a suitable inference procedure, which we cover in the sections
that follow.

2.5. Non-stationary Gaussian process baseline
A Gaussian process (GP) is a stochastic process {Yt : t ∈ T } where every

finite realization over a subset of the index set T have consistent multivariate
Gaussian distributions. The process is completely specified by its mean function,
m(t) and its covariance function c(t, t′). While not many restrictions are put on
the mean function, it is a requirement that the covariance function is positive
definite. This means that the kernel matrix, K ∈ Rn×n, with components

Ki,j = c(ti, tj), (9)

is positive definite for any t1, . . . , tn ⊂ T . While it is not trivial to con-
struct a positive definite function, it is relatively easy to make new construc-
tions by composing known positive definite functions using a set of combination
rules (Bishop, 2006). For a thorough introduction on GP’s for machine learning,
we refer to the text by Rasmussen and Williams (2005).
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In regression, it is common to use a stationary GP, where the covariance
only depends on the distance between inputs. A commonly used kernel, which
we will use as a starting point, is the squared exponential,

c(t, t′) = ν · exp
(
−∥t− t′∥2

2ℓ2

)
. (10)

Here, t, t′ ∈ RD are two (vector) inputs, ∥ · ∥ denotes any norm (usually the
Euclidean), ℓ2 is a length scale parameter which controls flexibility of the GP
(how quickly it fluctuates), and ν determines the function variance.

The problem with using a stationary GP to model the spectral baseline is
that it has the same level of flexibility everywhere. With too much flexibility,
the baseline model might capture parts of the Raman signal of interest, and
with too little flexibility a complex baseline is not modelled in sufficient detail:
In both cases this can lead to inaccurate estimation of the signal parameters.

One idea could be to let the length scale vary with t in a squared exponen-
tial kernel; however, this does not lead to a valid covariance function without
significant changes to the kernel (Gibbs, 1997; Heinonen et al., 2015). Instead,
we construct a non-stationary GP using input-warping (Vinokur and Tolpin,
2021): If c(t, t′) is a valid covariance, the input-warped covariance c(ϕ(t), ϕ(t′))
is also positive definite for any function ϕ(t) (Bishop, 2006).

With an appropriate choice of warping function ϕ(t), we can increase the
smoothness of the GP in peak regions. To gain some intuition, consider a scalar
index t ∈ R and a linear warping function, ϕ(t) = a · t: As a decreases, the
smoothness of the GP will increase as points t and t′ will be closer together and
thus more correlated. Thus, we design the function ϕ(t) to increase linearly at
unit rate outside peak regions and at a higher rate r in peak regions.

To interpolate smoothly between the regions we employ the soft window
function,

Ξ(ω; γ) =
1

2

[
tanh

(
ω + γ

2 )

s

)
− tanh

(
ω − γ

2 )

s

)]
, (11)

centered at zero, of width 2γ, and with s controlling its softness.
To govern the slope of the input warping we construct a function that has

value 1 outside peak regions and has value a under each peak with smooth
interpolation between the regions,

ξ(ω) = 1− (1− a) · max
k∈1...k

Ξ(ω − ck; γk). (12)

Here we use the maximum of the soft window functions across peaks to correctly
handle the situation with multiple overlapping peaks. The width of each peak
region is taken as the peak half-width.

Finally we construct the warping function as

ϕ(ω) =

∫ ω

0

ξ(ω′)dω′, (13)
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which we compute in practice by numerical integration with the rectangle rule,

ϕ(w) = ∆ω

w∑
i=1

ξ(ωi), (14)

where ∆ω = ωk+1 − ωk is the resolution of the wavenumber axis.
An illustrative example of the procedure, including example draws from the

non-stationary Gaussian process are given in Figure 3.

2.6. B-spline baseline
We contrast our method with the joint signal and baseline estimation tech-

nique proposed by Han and Ram (2020), where the baseline is modeled using
a B-spline: A piecewise polynomial of fixed degree, joining at a predefined set
of knots. For a fixed set of knots, the B-spline is uniquely characterized by its
coefficients. For a general introduction to B-splines, we refer to Hastie et al.
(2009).

Following Han and Ram (2020), we use cubic splines, d = 3, as a good
trade-off between flexibility and smoothness, and use equally spaced knots on
the wavenumber axis (with multiplicity d+1 at the endpoints). We precompute
the associated basis matrix, such that the baseline may be expressed as,

Bw =

Mb∑
m=1

Ψw,mλm, (15)

where Ψ is the B-spline basis matrix, and λ are the coefficients to be estimated.
The number of spline basis functions is Mb = Mk − d − 1 where Mk is the
number of knots and d is the degree of the spline.

2.7. Probabilistic model and inference
A major advantage of estimating the signal and baseline jointly is the ability

to obtain uncertainty estimates on parameters and predictions, even when pa-
rameters are strongly correlated. To do this, we formulate the model as a joint
distribution of the data and parameters and use Bayes’ theorem to obtain the
posterior distribution of parameters given the observed data.

Based on the noise assumption, the likelihood is Gaussian,

p(Xn,w|θ) = N

(
K∑

k=1

αn,kVk,w + βnBw + κn, τ
−1

)
, (16)

where θ = {α, c,γ,η,β, B,κ, τ} denotes all model parameters. We now intro-
duce the following priors,

ck
i.i.d∼ U(ca, cb), αn,k

i.i.d∼ N+(µα, τ
−1
α ),

γk
i.i.d∼ N+(µγ , τ

−1
γ ), ηk

i.i.d∼ U(0, 1),

βn
i.i.d∼ N+(µβ , τ

−1
β ), B|c,γ,η ∼ GP (0, c (ϕ(w), ϕ(w′))) ,

κn
i.i.d∼ N+(µκ, τ

−1
κ ), τ ∼ G(aτ , bτ ).

(17)
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Here, N+(µ, σ2) is a normal distribution truncated to the non-negative half-
axis, with parameters µ and σ2, G(a, b) is a Gamma distribution, and U(a, b)
is a continuous uniform distribution on the interval [a, b]. All hyperparameters
can be chosen to yield fairly uninformative priors, but if further knowledge e.g.
about the analyte’s peak positions is available, one can switch to more infor-
mative priors to aid the inference process. Guidelines for selecting appropriate
priors are included in Appendix C.

This gives us our full joint probabilistic model,

p(X, θ) =

(∏
n,w

p(Xn,w|θ)

)(∏
k

p(ck)p(γk)p(ηk)
∏
n

p(αn,k)

)
×(∏

n

p(βn)p(κn)

)
p(B|c, γ, η)p(τ), (18)

where we readily get the posterior distribution using Bayes’ theorem.
For the experimental comparison to a B-spline baseline, we replace the GP

prior by a Gaussian prior on the B-spline coefficients,

λm
i.i.d∼ N (0, τ−1

λ ), (19)

and keep the rest of the model specification identical.

2.7.1. Inference
We propose a Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC)

sampling procedure. Because the peak amplitudes and all parameters of the
baseline models are linear in the Gaussian likelihood and have (truncated) Gaus-
sian priors, their conditional distributions are tractable. The specifics of how
this allows us to construct standard Gibbs updates for these parameters is given
in the supplementary material. However, because of the strong coupling between
the baseline and signal model, using only separate Gibbs updates does not work.
Conditioned on a given peak model, the Gibbs update for the baseline will be
very constrained (it must fit the residual), and the MCMC sampler will thus
tend to get locked in suboptimal solutions. To solve this, we use a joint signal
and baseline update in the form of a Metropolis-Hastings step as outlined be-
low, which leads to much faster mixing. To simplify the presentation, we omit
some conditionals in the distributions, as they do not change when a new peak
is proposed:

1. For each peak, k = 1, . . . ,K:
(a) Propose new peak parameters (c′k, γ′

k, η
′
k) from a random walk pro-

posal with some stepsize, which may be varied over the run or ran-
domly drawn from a small set of values.

(b) Conditioned on the proposed peak, propose a new baseline, B′ from
its Gibbs distribution.

(c) For each spectrum n, propose an amplitude α′
n,k from its Gibbs dis-

tribution.
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(d) Accept or reject this set of parameters jointly using a Metropolis-
Hastings correction.

2. Sample α using its Gibbs distribution as in step 1c).
3. Sample B using its Gibbs distribution as in step 1b).
4. Sample β from its Gibbs distibution.
5. Sample κ from its Gibbs distribution.
6. Sample τ from its Gibbs distribution.

The process above is repeated until the desired number of samples has been
drawn. Details of the derivation of the updates are given in Appendix A. We
note that the computation time required to estimate the NSGP-baseline model
is higher than the B-spline baseline model introduced by Han and Ram (2020)
but is generally on the order of minutes depending on the size of the map (our
inference approach scales cubically in the number of wavenumbers) and on the
number of samples to be drawn.

While it would be possible to extend the inferences procedure to also learn
additional hyperparameters, such as ℓ and a which control the GP lenghtscale
and s which controls the smoothness of the transition regions, in this work we
choose these manually.

There are multiple strategies to estimate the number of peaks K from the
data: Han and Ram (2020) introduce reversible jump MCMC steps to the sam-
pler, which allows the parameters to change dimensionality. This approach can
seamlessly be integrated with our method. An alternative proposed by Li et al.
(2020) is to assume that there is a peak located at every wavenumber, and en-
force sparsity on the amplitudes of the peaks: While this circumvents estimating
the peak locations, in our experience it makes it much more difficult to estimate
the peak amplitudes. In the following, we assume that the number of peaks is
known, and focus on the estimation of the peak parameters.

3. Results and discussion

We first evaluate the proposed methods on synthetic data and compare with
the B-spline baseline model. Next, we examine the performance of the model
on a difficult Methotrexate SERS map dataset. Finally we compare with estab-
lished datadriven baseline estimation methods on a standard NIR data set of
corn.

3.1. Synthetic data experiments
In all of the synthetic data experiments we use the following settings:

• Simulated maps consist of N = 5 spectra with shared parameters except
for independent peak amplitudes, background scale and bias, as well as
observation noise.

• The wavenumber axis is defined as ωw = w for w = 1, . . . , 300.
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• We simulate K = 3 spectral peaks with

– locations ck ∼ U(25, 275),
– peak widths γk ∼ N+(7, 1),
– lorentzianities ηk ∼ U(0, 1), and
– amplitudes αn,k ∼ U( 12 , 1),

with the constraint that the distance between peak locations is at least 25
to avoid overlap. Thus each simulated spectral curve contains peaks with
different locations, amplitudes, and shapes. As detailed in the individual
experiments, the amplitudes are further multiplied by a scale factor to
control the signal strength.

• Baselines are generated according to one of the following procedures:

1. AR(2): A zero mean unit variance second-order autoregressive pro-
cess

Bw = −0.9505Bw−2 + 1.95Bw−1 + 7.04 · 10−3εw (20)

with εw ∼ N (0, 1) and steady state initial conditions.
2. B-spline: A realization of a B-spline with random coefficients drawn

from a zero mean Gaussian distribution

λm ∼ N (0, 1). (21)

The number of basis functions is chosen as Mb = 8 as suggested by
Han and Ram (2020) since this achieves smooth baseline that looks
realistic. In all experiments on synthetic data, the B-spline baseline
model has the correct number of basis functions.

3. NSGP: A realization of our proposed non-stationary GP with length-
scale λ = 1 · 103 outside peak regions and relative lengths scale
a = 0.01 inside peak regions, transition smoothness s = 3, and vari-
ance ν = 1.

These procedures generate baselines with fairly similar variance and au-
tocorrelation (see Figure 4). Finally, the baselines are

– scaled by βn ∼ N+(1, 0.1), and
– shifted by κn ∼ N+(3, 0.1).

• The noise variance is fixed at τ−1 = 0.01.

Based on these choices, SERS maps are simulated according to Equation 8.
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Table 1: Mean absolute error in estimating the peak location and amplitude with different
simulated baselines.

Parameter Model Simulated baseline
AR(2) B-spline NSGP

ck (location) NSGP 0.802 0.816 0.276
B-spline 0.840 0.764 0.991

αk (amplitude) NSGP 0.270 0.239 0.195
B-spline 0.510 0.440 0.500

3.1.1. Different simulated baselines
In the first experiment we compare the NSGP and B-spline models on the

three different simulated baselines. We expect the best performance when the
model matches the simulated baseline, while the AR(2) serves as an additional
test where the modeling assumptions are not matched.

We focus our attention on the estimation of the location and amplitude
parameters, and present the results in terms of the mean absolute error on
these parameters, averaged over 100 simulated maps. All maps were generated
at an intermediat signal-to-baseline (SBR) ratio, with a unit amplitude scale
factor, which means that most signal peaks are clearly visible in the spectra.
An example spectrum is illustrated in Figure 5 (Ampl. scale 1).

Using the MCMC procedure, we draw 10 000 samples, discard the first 5 000
samples for burn-in, and use the mean value of the posterior marginals to esti-
mate the parameters of interest.

The results of the experiment are given in Table 1. Regarding the location
parameter, the NSGP outperforms the B-spline on the AR(2) background. The
B-spline model performs slightly better than the NSGP on the B-spline baseline,
whereas the NSGP model performs substantially better than the B-spline on the
on the NSGP baseline. Regarding the amplitude parameter, the NSGP model
performs better than the B-spline model in all cases, including when the baseline
is generated from a B-spline model.

3.1.2. Amplitude estimation for small amplitude peaks
An especially important aspect of certain types of chemometrics for spec-

troscopy is the ability to accurately detect and quantify signals at weak signal
strengths, where the signal-to-baseline ratio is low.

To test our model’s ability to detect signals at low SBR, we created a syn-
thetic data set of 1 000 maps with the peak amplitude scale factor varied log-
arithmically from 0.1 to 10, and employing an AR(2) baseline. Examples of
simulated spectra at different SBR can be seen in Figure 5.

For the inference, we again draw 10 000 samples and discard 5 000 as burn-
in. We evaluate our NSGP baseline correction method against the previously
described B-spline baseline correction method and compare the results of the
extracted amplitudes against the true underlying amplitudes. The results are
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binned according the individual peak magnitudes. We show the results in Fig-
ure 6 where the true underlying amplitudes are shown against the estimated
amplitudes for the two models and in Figure 7 where the relative errors are
shown.

We see that when the underlying peak amplitudes are sufficiently small, our
model outperforms the B-spline baseline model, with lower errors. This is due
to the our model better handling the trade-off between modeling the signal with
baseline and with the spectral model.

3.2. Detecting and quantifying methotrexate in human serum
Methotrexate (MTX) is a widely used anti-cancer drug often used in patients

with eg. leukemia, breast cancer and more, and has high toxicity in high-dosis
cases (HD-MTX), especially if the usage is long Howard et al. (2016); Paci et al.
(2014). Thus, to manage the dosis and toxicity of MTX in HD-MTX patients,
an expensive rescue-drug, leucovorin (LV) is administered along with MTX.
This inconvenience can be alleviated by employing so-called therapeutic drug
monitoring of MTX, and recently it has been shown by Göksel et al. (2021)
that MTX can be detected in human serum with SERS using minimal sample
preparation.

In the work of Göksel et.al. a simple linear baseline correction is applied since
the characteristic Raman peak of MTX (at 687 cm−1) is of known position, and
thus such a baseline is easily applicable, that is, they fit a linear model to points
around the peak locations, excluding the wavenumbers under the peak. We call
this approach a manual local linear fit. This approach to baseline correction
has the advantage that it is simple, computationally cheap compared to our
flexible approach and is easily interpretable. However, it requires extensive
prior information regarding the analyte and quite substantial manual labour,
especially if the assumption of a common baseline across the SERS map is not
relaxed. The raw data is shown in Appendix B.

We analyze the same dataset of MTX in filtered (artificial) human serum
that is used by Göksel et al. (2021). It consists of 7 different concentration levels
(0, 2.5, 5, 10, 15, 20 and 30 µM MTX respectively) and there are 3 maps for each
concentration level, corresponding to 21 SERS maps in total. Each of the maps
are of (roughly) size 45×45 and consists of 1686 wavenumbers from 50 cm−1 to
3300 cm−1 at a resolution of approximately 2 cm−1. For the experiments below,
we consider only wavenumbers from 648 cm−1 to 735 cm−1 for simplicity, and
we height-normalize each map to have a maximum intensity of 2. We compare
our non-stationary GP baseline model to the B-spline approach, a manual local
linear fit with the shared baseline assumption relaxed (ie. each spectrum has an
individual baseline) and simply reading off the amplitude of the raw spectra with
no baseline correction. Since no signal is present along the edges of the maps,
we remove a few of the spectra corresponding to the edges of the substrate.

Using the MCMC procedure described previously, we draw 60.000 samples,
and discard 30.000 as burn-in. The priors used for this problem are (for the
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NSGP baseline model),

ck
i.i.d∼ U(683, 691), αn,k

i.i.d∼ N+(0.1, 0.1),

γk
i.i.d∼ N+(2, 0.05), ηk

i.i.d∼ U(0, 1),

βn
i.i.d∼ N+(0.1, 0.001), κn

i.i.d∼ N+(3, 1),

τ ∼ G(1, 1).

The NSGP background model is tuned to appropriate hyperparameters. The B-
spline is set with 15 basis functions, yielding 19 knots in total, and the prior for
βn is changed to a N+(1, 0.01) due to convergence issues. This was selected by
tuning the parameters such that the baseline achieved a good trade-off between
flexibility of the baseline and accurate signal extraction. All other priors are
identical for the two baseline models.

We compare the results by using calibration curves, which are computed by
fitting a linear regression model to map the estimated peak amplitudes to esti-
mated concentrations. We select the top 20% spectra as measured on estimated
peak amplitudes to compute these calibration curves.

The results are seen in Figure 8 where the recalibrated curves for the NSGP
baseline model, the B-spline baseline model, a manual local linear correction
and a case where the signal intensity is read off with no correction or peak fit-
ting is present. Both the B-spline baseline model and the direct peak amplitude
readings essentially fail to correlate with the concentration, whereas the manual
local linear fit and our proposed method display a clear relation with the con-
centration. Some examples of the model fit for the NSGP model and B-spline
model can be seen in Figure 9.

From here, it is clear, that appropriate baseline correction is indeed needed
for accurate calibration. Our model outperforms the B-spline baseline model
due to the complicated nature of the problem (see eg. Figure 9), and performs
similar to the manual linear baseline correction, particularly in the challenging
low concentration domain. While our method does not outperform the manual
local linear baseline estimation in this case, an advantage of our approach is that
it reduces the requirement for manual labor and makes it possible to automate
the task to a higher degree.

3.3. Baseline correction of corn NIR spectra
To compare our method to established datadriven baseline estimation tech-

niques, we examine its performance on a NIR dataset of corn samples (http:
//eigenvector.com). The corn dataset consists of 80 NIR spectra of measured
at 700 wavenumbers from 1100 nm to 2498 nm. For each sample, four target
measurements of moisture, oil, protein, and starch are given.

Following Li et al. (2020), the comparison is carried out by fitting a partial
least squares (PLS) regression model on the baseline subtracted data to predict
the target variables. We compare with two established methods, namely adap-
tive iteratively reweighted penalized least squares (airPLS, Zhang et al., 2010),
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and sparse Bayesian learning for baseline correction (SBL-BC, Li et al., 2020).
In addition, we include results on PLS regression on the raw data, i.e. no
baseline subtraction (NO).

For the proposed method, the priors were set as fairly uninformative,

ck
i.i.d∼ U(1100, 2498), αn,k

i.i.d∼ N+(0.1, 0.25),

γk
i.i.d∼ N+(50, 400), ηk

i.i.d∼ U(0, 1),

βn
i.i.d∼ N+(1, 1), κn

i.i.d∼ N+(1, 1),

τ ∼ G(1, 1).

with the prior peak amplitude and width priors set to approximately match the
peaks in the data as assessed by visual inspection.

To provide a suitable model order and a rough initial fit, we used K = 13
peaks initialized at wavenumbers 1200, 1364, 1464, 1570, 1688, 1754, 1776, 1932,
2106, 2286, 2314, 2342, and 2492, chosen by manual inspection of the spectra.
Using the described MCMC procedure, we generated 500 samples and used
only the last sample as a point prediction. We disregarded the estimated peak
parameters and used only the estimated baseline. For airPLS we used a fairly
strong smoothness of λ = 5 · 107 which we found to give good results across all
targets.

The dataset and fitted baselines are illustrated in Figure 11. Both SBL-BC
and airPLS smoothly track the baseline. With the high smoothness we found
optimal for airPLS the estimated baselines are nearly linear. The baselines
estimated by NSGP are significantly less smooth but flat in the peak regions,
and do not track the spectra as closely because of the additive signal model used
in the fitting procedure.

We then estimated the four targets using PLS. We randomly selected 65 of
the 80 observations for training and used 5-fold crossvalidation within the 65
training observations to select the number of PLS components. We then fitted
the selected PLS model on the 65 training observations and tested on the 15
held-out observations. The procedure was averaged over 1000 random splits.

Results are shown in Table 2. Finally, to examine how sensitive the methods
are to the size of the training data, we repeated the entire procedure for training
set sizes of 60, 61, . . . , 70. These results are shown in Figure 10. In line with
previously published results, no baseline correction performed best for predicting
moisture. For predicting oil, all methods were near identical, perhaps with a
slight advantage to airPLS. Predicting protein, SBL-BC was substantially better
than the other methods. Finally, for predicting starch, NSGP performed best
with both airPLS and SBL-BC performing substantially worse than NSGP and
NO.

4. Conclusion

We have developed and described a novel approach to joint estimation of
signal and baseline for vibrational spectroscopy in the case of an additive base-
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Moisture Oil Protein Starch
NO 0.007 0.025 0.080 0.117
SBL-BC 0.049 0.025 0.064 0.183
airPLS 0.037 0.024 0.086 0.169
NSGP 0.023 0.025 0.083 0.111

Table 2: Root mean squared error of prediction on the Corn NIR dataset. Comparison of
no baseline correction (NO), adaptive iteratively reweighted penalized least squares (airPLS),
sparse Bayesian learning for baseline correction (SBL-BC) and non-stationary Gaussian pro-
cess (NSGP) baseline estimation methods.

line using non-stationary Gaussian processes for the baseline. We have shown
that our model outperforms a similar approach using B-splines for the baseline,
exemplified with surface enhanced Raman spectroscopy, both in the case of syn-
thetic and real-life SERS data.
Our approach, while requiring some tuning of hyperparameters and inference
process, provides a very flexible approach where very little user-input is re-
quired, and achieves similar performance to a manual baseline correction, which
is both labor intensive and requires prior knowledge of the analyte to be effec-
tive. Furthermore, our approach has the benefit of giving natural uncertainty
quantification, as it is formulated in a fully Bayesian framework.

Our approach is generally applicable to any model of the form,

Xw = f(Xw; θ) +Bw + ε,

where f is a known function of parametes θ and the baseline B is has local differ-
ences in flexibility, ie. where the signal model and baseline model is competing
to explain observations.
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Appendix A. Derivation of sampling distributions

In this section we derive the relevant conditional distributions that are used
in the Metropolis-within-Gibbs sampling scheme. We will provide some detail,
but since some of these results are standard in the context of Bayesian statistics,
they will only be summarized.
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For convenience, we restate the factorized model, (18), here

p(X,α, c,γ,η,β, B,κ, τ) =∏
n,w

p(Xn,w|αn,:, c,γ,η, βn, Bw, κn, τ)×∏
k

p(ck)
∏
k

p(γk)
∏
k

p(ηk)
∏
n,k

p(αn,k)×∏
n

p(βn)
∏
n

p(κn)× p(B|c,γ,η)× p(τ).

and the priors (17),

ck
i.i.d∼ N+(µc, τ

−1
c ) αnk

i.i.d∼ N+(µα, τ
−1
α )

γk
i.i.d∼ N+(µγ , τ

−1
γ ) ηk

i.i.d∼ U(0, 1)

βn
i.i.d∼ N+(µβ , τ

−1
β ) B|c, γ, η ∼ GP (0, C(w,w′))

κn
i.i.d∼ N+(µκ, τ

−1
κ ) τ ∼ G(aτ , bτ )

Finally, recall that the likelihood is Gaussian,

Xn,w ∼ N

(
K∑

k=1

αn,kVw(ck, ηk, γk) + βnBw + κn, τ
−1

)
.

Appendix A.1. Gibbs update for τ

Since the prior for the likelihood precision is a gamma distribution, τ ∼
G(aτ , bτ ) and the likelihood is Gaussian, we obtain a standard result in Bayesian
statistics, namely that the relevant Gibbs distribution is,

τ |X,α, c,γ,η,β,B,κ ∼ G
(
aτ + NW

2 , bτ + 1
2∥X − X̂∥2F

)
, (A.1)

where N is the number of spectra in the map, and W is the number of measured
wavenumbers, X̂ = αV (c,γ,η)+βB⊤+κ1⊤

W is our model reconstruction, and
∥ · ∥F is the Frobenius norm of a matrix.

Appendix A.2. Gibbs update for B

We seek to compute,

p(B|X,α,β, c,γ,η,κ, τ) ∝ p(B,X,α,β, c,γ,η,κ, τ).

Considering the joint distribution as a function of B, we see that up to propor-
tionality, we have,

p(B|X,α,β, c,γ,η,κ, τ) ∝ p(X|B,α,β, c,γ,η,κ, τ)p(B|0, C)
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where C is the non-stationary kernel for the Gaussian process described in
subsection 2.5. In the following, we assume that the length-scale parameter ℓ2

as well as s in the transformation are deterministic hyperparameters.
Inserting the Gaussian likelihood and the GP-prior we obtain,

p(B|X,α,β, c,γ,η,κ, τ) ∝
∏
n

∏
w

N (Xn,w|X̂n,w, τ
−1)N (B|0, C),

yielding (to proportionality),

p(B|X,α,β, c,γ,η,κ, τ) ∝

exp

[
−1

2
τ∥X −αV − βB⊤ − κ1⊤

W ∥2F − 1

2
B⊤C−1B

]
,

where ∥ · ∥F is the Frobenius norm.
Defining ϕ = αV + κ1⊤, this is rewritten,

log p(B|X,α,β, c,γ,η,κ, τ) ∝
1

2

[
τ∥X∥2F + τ∥ϕ∥2F + τB⊤β⊤βIWB−

2τ⟨ϕ,X⟩F − 2τB⊤Xβ + 2τB⊤ϕβ +B⊤C−1B
]
,

where the proportionality is up to an additive constant not dependent on B and
⟨·, ·⟩F denotes the Frobenius inner product.
Since we are interested in a distribution over B, we leave out all terms not
dependent on B, getting to proportionality,

log p(B|X,α,β, c,γ,η,κ, τ) ∝

− 1

2
[τB⊤β⊤βIWB − 2τB⊤Xβ + 2τB⊤ϕβ +B⊤C−1B],

where IW is the identity matrix of size W ×W .
Reordering, we get,

log p(B|X,α,β, c,γ,η,κ, τ) ∝

− 1

2
B⊤(τβ⊤βIW + C−1)B + τB⊤(X − ϕ)β.

Define now A−1 = τβ⊤βIW +C−1 and µ = τA(X −ϕ)β. If we insert, we get,

log p(B|X,α,β, c,γ,η,κ, τ) ∝ − 1

2
B⊤A−1B +B⊤A−1µ,

which is the log-density of a multivariate Gaussian in B with covariance A and
mean µ, meaning that,

B|X,α,β, c,γ,η,κ, τ ∼ N
(
τ
[
τβ⊤βIW +K−1

]−1

(X − ϕ)β ,[
τβ⊤βIW +K−1

]−1
)
.
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Appendix A.3. Gibbs update for κ

Recall that κ is the translational bias for the model and that a truncated
normal prior is imposed.
The derivation of the Gibbs sampling distribution is very similar in all but
algebra to the derivation for B, and so we shall skip over some details in the
derivation.
The derivation starts by noting that the truncated normal distribution can be
written simply as,

p(κn|µκ, τ
−1
κ ) ∝ N (κn|µκ, τ

−1
κ )I(κn ≥ 0),

where I(A) is the indicator function for boolean variable A, ie.

I(κn ≥ 0) =

{
1, κn ≥ 0

0, otherwise
.

This is extensible to the log-domain, where we simply define,

log I(κn ≥ 0) =

{
0, κn ≥ 0

−∞, otherwise
.

It is then straightforward to show that (by simple algebra),

p(κn|X,α, c,γ,η,β, B, τ) ∝ p(X|α, c,γ,η,β, B,κ, τ)p(κn|µκ, τ
−1
κ ),

is in fact a truncated normal distribution with parameters

µ = τ (X−αV −βB⊤)1W+µκτκ
Wτ+τκ

σ2 = (Wτ + τκ)
−1

such that,

κn|X,α, c,γ,η,β, B, τ
i.i.d∼ N+

(
τ (X−αV −βB⊤)1W+µκτκ

Wτ+τκ
, (Wτ + τκ)

−1
)

Appendix A.4. Gibbs update for α

Recall that we impose an i.i.d truncated Gaussian prior on the spectrum
specific peak amplitudes, αk,n, ie.

p(αk,n) ∼ N+(µα, τ
−1
α ).

With the Gaussian likelihood we have employed, the derivation of the update
is analogous to that of κn, and we get

αn,k|X, c,γ,η,β, B,κ, τ
i.i.d∼ N+(µ, σ2),

where
σ2 = τα + τV (ck, γk, ηk)

⊤V (ck, γk, ηk)

µ = σ2

µατα + τ
∑
w

Vw,k

Xn,w − βnBw − κn −
∑
k′ ̸=k

αn,k′Vk′,w
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Appendix A.5. Gibbs update for β

Since we have the prior βn
i.i.d∼ N+(µβ , τ

−1
β ), and the likelihood is Gaussian,

we are again in an analogous situation to that of the Gibbs update of κn. This
gives us,

p(β|X,α, c,γ,η, B,κ, τ) = N+(µ,Σ),

where,
Σ =

1

τβ + τB⊤B
IN

µ = Σ
(
τ
[
X −αV (c,γ,η)− κ1⊤

W

]
B + µβτβ1N

)
where IN is the identity matrix of size N ×N and 1M is a M ×1 vector of ones.

Appendix A.6. Gibbs update for spline coefficients
For the B-spline baseline model, we precompute the B-spline Vandermonde

matrix evaluated at all wavenumbers w. Denote this matrix Ψ. Denote the
coefficients λ. Then, the baseline is expressed as,

B = Ψλ.

We impose a zero-mean Gaussian prior on the spline coefficients,

λ ∼ N (0, τ−1
λ I). (A.2)

Since Ψ is deterministic, the derivation is very similar to the one for κ, as we
simply compute,

p(λ|X,α, c,γ,η,β,κ, τ, ) ∝ p(X|α, c,γ,η,β,κ, τ,λ)p(λ|τλ), (A.3)

which by simple algebra can be shown to be a multivariate Gaussian with pa-
rameters,

Σ =
(
NτΨ⊤Ψ+ τλI

)−1

µ = Σ
[
τ
(
X −αV − κ⊤1W

)
Ψβ

]
Appendix B. Raw MTX spectra

Figure B.12 shows the raw MTX data. Each color represents experimen-
tal repetitions of the experiment at the corresponding concentration. The bold
colored line denotes the mean spectrum, obtained by averaging over each spec-
trum. The vertical red, dotted line is the location of the peak of interest at 687
cm−1. The spectra have been preprocessed only such that they are on the same
scale for visualization purposes (ie. κn ≈ 0 for all n). The figure shows why
the problem is challenging. This is namely because the amplitude of the peak
at 687 cm−1 is not increasing much, even at drastically higher concentrations.
This is in correspondence with our findings, see eg. Figure 8.
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Appendix C. Guidelines for setting hyperparameters

The proposed method for joint peak and baseline estimation has a number of
hyperparameters which must be set. In the following we give general guidelines
for reasonable prior and parameters settings which are not strongly informative.

ca, cb The upper and lower limit for peak positions is typically set to cover the
entire spectral range, such that ca is set to the lowest wavenumber and cb
is set to the highest wavenumber.

µα, τ−1
α The mean and variance of peak amplitudes should be set to cover the
expected range of peak amplitudes. For example, if peak amplitudes are
typically in the range 0–1 units, reasonable settings would be µα = 0.5,
τ−1
α = 0.52.

µγ, τ−1
γ The mean and variance of the peak widths should be set to cover
the expected range of peak widths. For example, if a typical peak widts
are in the range 20–40 units, reasonable settings would be µγ = 30 and
τ−1
γ = 102

µβ, τ−1
β The mean and variance for the multiplicative baseline scale should
match the typical basline level. For example, if the baseline is typically in
the range 2–4 units across the different spectra, reasonable settings would
be µβ = 3 and τβ = 12.

µκ, τ−1
κ The additive bias for the baseline should typically have zero mean prior
with a high variance.

ατ , βτ The prior for the noise variance should typically set to ατ = βτ = 1 or
smaller to be relatively non-informative.

a The relative lengthscale (flatness) in peak regions should typically be around
0.01.

s The smoothness of the interpolation between peak and non-peak regions
should typically be set between 10–20 % of the expected typical peak
width.
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Figure 3: The transformation used for input-warping in the GP. Top: Soft window functions
(dotted lines) are placed on each spectral peak (located at w = 70, 100, 180) and combined to
form the warping function slope, ξ(w). Middle: Integration of the slope yields the warping
function, ϕ(w). Bottom: Three samples from a GP with an input-warped squared exponential
kernel show that random functions are more smooth in the peak regions.
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Figure 4: Examples of simulated baselines. The NSGP baseline is generated conditioned on
peak positions c1 = 70, c2 = 120, c3 = 250.
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Figure 5: Examples of generated data with amplitude scales in the range 0.1–10, here visual-
ized with the same baseline.
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Figure 6: Raw estimation of amplitudes in synthetic spectra, binned on true amplitudes.
Perfect estimation would mean that the points would lie on the dotted gray line. Colored in
regions denote standard deviations within the bins. Note that both axes are logarithmic.
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Figure 7: Relative mean absolute error of estimated amplitudes as a function of true signal
amplitude. Note that both axes are logarithmic. Note also, that in this plot, we look at each
peak independently, thus ignoring the SERS map connection between some peaks.
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Figure 8: Calibration curves for MTX concentration estimation, computed by simple linear
regression on the estimated peak amplitude.

29



Figure 9: Examples of model reconstructions for the MTX data for different increasing con-
centrations. Note that these are merely single spectra in select SERS maps. Blue line is the
estimated spectrum of the posterior, green line is the expected baseline of the posterior. We
see that for especially low concentrations, the NSGP baseline still allows for some of the signal
to be explained by the peak model.
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Figure 10: Root mean squared error of prediction on the Corn NIR dataset. Comparison of
no baseline correction (NO), adaptive iteratively reweighted penalized least squares (airPLS),
sparse Bayesian learning for baseline correction (SBL-BC) and non-stationairy Gaussian pro-
cess (NSGP) baseline estimation methods for varying sizes of the training data set.
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Figure 11: Original sepctra and estimated baselines on the Corn NIR dataset.
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Figure B.12: Raw MTX data translated to be on the same scale (i.e. ensuring κn ≈ 0 for all
spectra). Note that the signal strength does not increase much as concentration increases.
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