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Abstract

Organometallic complexes are ubiquitous in homogenous catalysis, and their op-
timisation is of particular interest for many technologically relevant reactions.
However, due to the large variety of possible metal-ligand and ligand-ligand in-
teractions, finding the best combination of metal and ligands is an immensely
challenging task. Here we present an inverse design framework based on a diffu-
sion generative model for in-silico design of such complexes. Given the importance
of the spatial structure of a catalyst, the model directly operates on all-atom (in-
cluding explicit H) representations in 3D space. To handle the symmetries inherent
to that data representation, it combines an equivariant diffusion model and an
equivariant property predictor to drive sampling at inference time. We illustrate
the potential of the proposed framework by optimising catalysts for the Suzuki-
Miyaura cross-coupling reaction, and validating a selection of novel proposed
complexes with DFT.

1 Introduction

In-silico catalyst design is a grand chemical challenge [1, 2], and the combination of machine learning
(ML) and quantum chemistry (QC) methods is an appealing strategy. On one hand, surrogate ML
models can be trained on reference databases and, in turn, used to speed up property evaluation while
preserving the accuracy of the reference method. On the other hand, generative ML models can
learn the distribution of the chemical space of interest, and in turn generate novel chemical structures
that share aggregate properties with the training data (distribution learning). The combination of
surrogate and generative modelling opens the door to the inverse-design of compounds with optimised
properties, i.e. goal-directed generation [3].

ML inverse catalyst design involves defining the relevant chemical space for a reaction under study,
as well as collecting a suitable amount of QC data for training. While directly learning a conditional
generative model can sometimes be an option, it requires a sufficient number of labeled samples
with the desired properties, which is often not attainable. Instead, guidance decouples the generative
process from the conditional information, by only using the latter at inference time to steer the
generative model towards the target properties. Larger databases with relevant candidates [4–6] can
then be leveraged for training the generative model, and the amount of task-specific data, e.g. an
energy barrier for a particular reaction, can be limited to what the surrogate requires to be satisfactorily
accurate.

The geometry of a catalyst plays a great role in catalysis, and methods that operate on molecular
graphs or string representations lack information about the 3D structure of studied complexes. A
given molecular graph, or string, can potentially correspond to multiple spatial arrangements with
greatly varying properties. Additionally, bonding information is not properly defined for complexes
involving transition metals—requiring non-standardized descriptors [7]. Recently, generative models
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for 3D atomistic structures [8–10] have reached a point where they can compete with geometry-free
models, and the diffusion paradigm [9, 11, 12] seems particularly promising. Since the original
equivariant diffusion for molecules [9], numerous variants have been proposed to tackle various
problems such as conformer generation [13], linker design [14], structure-based design [15], or
target-aware design [16].

In this work, we introduce a guided equivariant diffusion model specifically designed to generate
organometallic complexes with optimised properties. In what follows, we assume that (1) we know
the kind of compounds that catalyse the reaction, and (2) the mechanism of the catalysed reaction,
along with the rate-determining step.

An overview of the conditional generation process is presented in Fig. 1. We summarise our main
contributions as follows:

• We implement a 3D equivariant diffusion generative model, specifically designed for
organometallic complexes;

• We train an equivariant property predictor, and use it in combination with the diffusion
model to perform regressor-guidance and sample organometallic catalysts with optimised
properties;

• For the specific problem of optimising a critical step in the Suzuki-Miyaura cross-coupling
reaction, we close the loop by validating a selection of generated complexes using DFT.

Figure 1: (Top) Overview of the conditional generation process of an organometallic catalyst C: (1) A
metal centre atomic type, C(C)

T , is sampled, (2) based on the centre, the number of atoms contained
in the coordinated ligands is sampled, (3) random atomic types and positions are assigned to all
ligand atoms, and (4) the conditional denoising runs for T steps. Each denoising step involves an
unconditional denoising update (steering towards valid molecules, via εθ) followed by a property
target correction (steering towards molecules with the desired properties, via yϕ). (Bottom) Example
of denoising trajectory for a complex with a Pd centre. The position and atomic type of the centre are
kept fixed during the whole trajectory, and only the surrounding atoms are denoised.

2 Methods

Data representation An organometallic complex is (often) composed of a (or multiple) transition
metal centre surrounded by organic ligands coordinated in very specific ways. It can be represented
as a set of atoms C = [C(C), C(L)] = {[x(C), h(C)], [x(L), h(L)]}, where x{(C),(L)} ∈ R{NC ,NL}×3

represents the atomic coordinates and h{(C),(L)} ∈ R{NC ,NL}×M the atomic types. Superscript (C)
refers to the centre (and possibly some proximal atoms), while (L) denotes all other atoms belonging
to the ligands coordinated around the centre. Depending on the problem under study, x(C) and/or
h(C), or possibly parts thereof, can be fixed and viewed as a type of context, such as when the centre
or the coordination pattern is known. Finally, we denote by y ∈ R the property of interest associated
with a complex.

Equivariant diffusion model for organometallic catalysts Diffusion models [11, 12] are gener-
ative models that include a diffusion process that iteratively corrupts data points towards a known
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prior through additive noise, and a generative denoising process that approximates the reverse of the
diffusion process.

In this work, we directly tailor the equivariant diffusion framework [9] to work with organometallic
complexes. For ease of notation, we always consider the centre to be fixed in what follows, both in
terms of composition and position. The tailored diffusion process, as it does not corrupt the centre,
writes

q(Ct|C) = δ
(
[C(C), C(L)

t ]
)
· N

(
C(L)
t |αtC(L), σ2

t I
)
, (1)

for t = 1, ..., T with T = 1000, where αt ∈ R+ controls how much signal is retained, σt ∈ R+

the amount of noise added, and δ(·) is the Dirac delta distribution. We use a variance preserving
process—a special case of noising process for which αt =

√
1− σ2

t , and model αt with a polynomial
scheduler [9].

To account for the fixed centre, the approximate denoising process is also modified, and writes
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where εθ is a denoising neural network trained to predict the noise ϵ sampled to obtain Ct from C,
and σ2

t|t−1 = σ2
t − σ2

t−1(αt/αt−1)
2.

To ensure that the induced likelihood pθ(C) is invariant to rotation and translation, we parametrise
our denoising neural network, εθ, with an equivariant MPNN inspired from the PAINN architecture
[17]. The latter is provably more expressive than the original EGNN [18], as it can resolve local
angular information [19]. Due to the fixed centre, we are not required to subtract the centre of gravity
for ensuring translation invariance.

The training objective is the simplified loss objective [20],

L(θ) = E C∼q(C)
Ct∼q(Ct|C)

[
||ϵx(L) − ϵ̂x(L) ||2 + ||ϵh(L) − ϵ̂h(L) ||2

]
, (4)

where [ϵ̂x(L) , ϵ̂h(L) ] = εθ(Ct, t) denotes the output of the denoising network, and [ϵx(L) , ϵh(L) ] ∼
N (0, I) is the noise sampled to form Ct according to Eq. (1).

To accommodate the changes introduced in the noising and denoising processes, we adapt the original
sampling procedure [9] in the following way: (1) we start by fixing the centre, by e.g. drawing it from
an empirical distribution over central atoms, (2) sample the number of atoms that will compose the
ligands given the centre, NL ∼ p(NL|C), and (3) execute the standard ancestral sampling procedure
by iteratively applying Eq. (3).

Regressor guidance Inspired from classifier-guidance [21], regressor-guidance builds on the
observation that conditioning on a label y can be done by sampling from pθ,ϕ(Ct−1|Ct, y) ∝
pθ(Ct−1|Ct)pϕ(y|Ct−1), where pθ(Ct−1|Ct) is the unconditional denoising process from Eq. (3),
and pϕ(y|Ct−1) is a conditional distribution over properties induced by a property predictor yϕ.
Here, we define pϕ(y|Ct−1) in terms of an energy function fϕ(y, Ct) = ||y − yϕ(Ct, t)||2, such that
pϕ(y|Ct−1) ∝ exp

(
− fϕ(y, Ct)

)
.

In practice, the conditional denoising process is a corrected version of the unconditional one from
Eq. (3),

pθ,ϕ(Ct−1|Ct, y) = δ
(
[C(C)

t , C(L)
t−1]

)
· N

(
C(L)
t−1|µC(L)

t−1
− σC(L)

t−1
∇µ

C(L)
t−1

fϕ(y, µCt−1), σ
2

C(L)
t−1

I
)
, (5)

with µCt−1
= [C(C)

t , µC(L)
t−1

], where the correction is obtained by evaluating the gradient of fϕ with
respect to µC(L)

t−1
.

The property predictor, yϕ, is parametrised by another equivariant neural network with a similar
backbone to that of the diffusion model, followed by a graph-level readout. The model is trained
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using the same diffusion process as the generative diffusion model, and its parameters are optimised
to minimise

L(ϕ) = E(C,y)∼q(C)
Ct∼q(Ct|C)

[
||y − yϕ(Ct)||2

]
. (6)

Figure 2: Reaction under study
in this work—the model generates
L1 − M − L2, and optimises the re-
action energy of Rxn A (∆ERxn A).
Figure reproduced from [22].

Dataset and Task We perform our experiments on the
Suzuki–Miyaura C–C cross-coupling dataset [22]. The
database features 7054 catalysts. Each of them is composed of
a metal centre, to which 2 ligands are bound: L1 − M − L2

(M ∈ {Ni,Pd,Pt,Cu,Ag,Au}). For each complex, a DFT-
level optimised geometry is available, along with the reaction
energy associated with the oxidative addition of the substrate
and the transition metal (∆ERxn A) – depicted by Rxn A in
Fig. 2.

While full kinetic profiles are usually required for accurate
description of catalytic performance, previous work [22, 23] has
shown that in the case Suzuki reaction ∆ERxn A could be used
as a descriptor for analysing the catalytic cycle thermodynamics
with volcano plots. To be relevant, catalysts should display a
reaction energy ∆ERxn A between −32.1 and −23.0 kcal/mol.

3 Experiments and Results

Unconditional Generation In this experiment, we evaluate and compare the ability of different
variants of the generative model to learn the unconditional data distribution. After training each
model, we generate 10000 samples, and evaluate their properties in terms of: chemistry (via validity,
formula uniqueness and formula novelty) geometry around M (via W L1,2−M and W L1−M−L2), and
binding energy (via W∆E). The details of the evaluation procedure and different baselines are
provided in Section 5.1 (see Appendix).

The results are presented in Table 1. In line with previous work [24], we first find that more expressive
geometric neural networks, i.e. EDM-PaiNN and OM-EDM-PaiNN, yield noticeably improved
validity. Second, our proposed OM-EDM-PaiNN reproduces the training distribution of the geometry
around M better, and produces samples that have an aggregated binding energy distribution that is
closest to the training distribution. In Fig. 3, we show that distribution for Pd, Pt and Cu.

Table 1: Results of the unconditional sampling experiment. V stands for Validity. UF and NF stand
for Unique Formulas and Novel Formulas.

V (↑) UF (↑) NF (↑) W L1,2−M (↓) W L1−M−L2 (↓) W∆E (↓)

EDM 0.352 0.327 0.268 0.256 0.0113 0.0044
EDM-PaiNN 0.594 0.493 0.389 0.203 0.0089 0.0040

OM-EDM 0.491 0.435 0.328 0.165 0.0084 0.0044
OM-EDM-PaiNN 0.603 0.470 0.337 0.147 0.0079 0.0036

FF − − − 0.814 0.0257 −
Dataset 0.878 0.644 − − − −

Conditional Generation We now leverage our framework for inverse-designing relevant
organometallic catalysts, and study how the distribution of the property of interest is impacted
when performing conditional generation.

We first find the modified diffusion introduced in Section 2 to be critical. Without information about
the metal-centre, the property predictor yϕ has a hard time producing meaningful predictions for
increasing levels of noise, and can not effectively be used for guidance. All produced samples are
unphysical. On the contrary, when using OM-EDM-PaiNN, conditional sampling can effectively be
performed and the property distribution can be steered towards the target value, as displayed in Fig. 3.
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Figure 3: Results of sampling OM-EDM-PAINN for M ∈ {Pd,Pt,Cu}.

We perform further validation by randomly selecting 6 samples (3 Pd and 3 Pt) featuring novel
formulas and an estimated binding energy (by an auxiliary surrogate) in the range of interest, and
recompute energy values with DFT, using the same protocol as the one used to generate the training
database [22]. We display the results in Fig. 4.

Figure 4: Results of the DFT validation (values in kcal/mol). For the predictions, we also provide the
standard deviation across an ensemble of 10 surrogates. The target value for conditional generation
was −27.55 kcal/mol, mid value of the range of interest ([−32.1,−23.0] kcal/mol). For each metal
centre, we randomly selected 3 conditional samples that were deemed valid and featured a novel
formula.

4 Conclusion

In this work, we have introduced a guided equivariant diffusion model specifically designed for the
generation of organometallic complexes with targeted properties. Our preliminary results showed
that the increased expressivity of the denoising neural network combined with a proper modelling of
the centre enables controllable property optimisation. We checked 6 novel conditional samples with
DFT, and found them to have a binding energy in relatively good agreement with their predicted
value (within 5 kcal/mol at most). Our future efforts will focus on further validating the proposed
method. This includes a thorough analysis of the generated compounds in terms of coverage and
diversity, along with additional DFT calculations.

Avenues for future work are numerous. Pre-training the generative diffusion model on large databases,
or alternative conditional sampling methods are natural options. Explicit modelling of the binding
point by joint generation of the catalyst and substrate might also be worth exploring.
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5 Supplementary Material

5.1 Evaluation details

5.1.1 Validity, Uniqueness, Novelty

All the presented metrics are proportions of the generated samples.

Validity A generated complex has to pass a series of checks to be deemed valid:

1. (one TM check) It has to have exactly one transition metal atom;

2. (distance check) All pairwise distances should be at least 0.9Å, and no atom can be
disconnected from the rest of the complex (i.e. its closest neighbour is located at distance
larger than the cutoff of 3.0Å);

3. (RDKit check) The ligands, i.e. complex where the TM has been removed, have to be valid
according to RDKit [25].

As the algorithm implemented in RDKit to determine bonds can not handle transition metals,
we proceed as follows: we remove the metal centre, and we then try to find a feasible bond
allocation using rdDetermineBonds.DetermineBonds. If the allocation succeeds, the sample
is deemed valid. As the removal of the metal centre can introduce local charges, we apply
rdDetermineBonds.DetermineBonds for different charges until one matches. If none matches,
the configuration is deemed invalid.

The validation method is not perfect, as only around 88% of the training database is deemed valid by
our algorithm (Table 1).

Uniqueness and Novelty As bonding is not properly defined for transition metal complexes, we
study uniqueness and novelty in terms of chemical formulas. This does not provide the full picture
as two identical formulas can correspond to different complexes. However, when encountering new
formulas, we are ensured that the corresponding complexes are novel. Uniqueness and Novelty are
defined as follows,

UF =
# (valid and unique formulas)

# samples
, (7)

NF =
# (valid, unique and novel formulas)

# samples
. (8)

5.1.2 Geometry and Binding Energy

Given the importance of the direct neighbourhood of the centre, we assess the geometry of centre
and the two proximal atoms by comparing the empirical distribution of the L1,2 − M distances and
the L1 − M − L2 angle. Similarly, we compare the training distribution of binding energy with the
distribution induced by the generated samples.

We measure the discrepancy between training distributions and distributions induced by the generated
samples using the 1-Wassertein distance. If Pz denotes the empirical measure for centre z ∈ Z across
the dataset, and Qz denotes the empirical measure the same centre across the samples generated by
the diffusion model, the distance between the two empirical distributions is given by

W (Pz, Qz) =
( 1
n

n∑
i=1

||X(i) − Y(i)||
)
, (9)

where X(i) and Y(i) denote samples from Pz and Qz respectively.

To obtain an aggregated distance value, we compute a weighted sum over the different metal-centres,

W (P,Q) =
∑
z∈Z

p(z)W (Pz, Qz), (10)

where p(z) denotes the empirical categorical distribution over the metal centre obtained from the
training data.
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5.1.3 Baselines

Our method, coined OM-EDM-PAINN implements Eqs. (1) and (3), and the more expressive
denoising neural network inspired from the PAINN architecture [17]. We compare it with 3 different
baselines:

• EDM: that reimplements the vanilla equivariant denoising diffusion [9];
• EDM-PAINN: that reimplements the vanilla equivariant denoising diffusion with a more

expressive denoising neural network identical to that of OM-EDM-PAINN;
• OM-EDM: that implements Eqs. (1) and (3), but uses EGNN [18] as denosing neural

network.

We additionally include a baseline based on geometry-free representations, where RDKit, or any
cheap force-field, is used to generate geometries. We denote that method by FF. We compute the
geometry statistics from the additional 18064 force-field-level data points released along with the
DFT-level data [22].
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