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Abstract

Time series data is fundamentally important for
many critical domains such as healthcare, finance,
and climate, where explainable models are neces-
sary for safe automated decision-making. To de-
velop explainable artificial intelligence in these do-
mains therefore implies explaining salient informa-
tion in the time series. Current methods for ob-
taining saliency maps assumes localized informa-
tion in the raw input space. In this paper, we ar-
gue that the salient information of a number of
time series is more likely to be localized in the
frequency domain. We propose FreqRISE, which
uses masking-based methods to produce explana-
tions in the frequency and time-frequency domain,
and outperforms strong baselines across a num-
ber of tasks. The source code is available here:
https://github.com/theabrusch/FreqRISE.

1 Introduction

With the increasing development of systems for au-
tomated decision-making based on time series in
critical domains such as healthcare [1, 2], finance [3]
and climate forecasting [4], the demand for safe and
trustworthy machine learning models is ever rising.
High accuracy and explainability are both necessary
components in achieving safety and trustworthiness.
Deep learning models have become a popular choice
to obtain high accuracy for time series tasks [5], but
due to their complex reasoning process they are dif-
ficult to interpret. Explainable artificial intelligence
(XAI) aims to open up the black box [6].

Most advancements in the field of XAI have been
made in explaining image data [7–9]. Images hold
the appeal of being easily interpretable by humans,
making it simpler to validate model decisions by
visual explanations. As such, many XAI methods
provide explanations in the form of a relevance map
over the pixels in the raw image [7, 9]. Time series do
not benefit from the same properties, since they are
by nature more difficult to understand [10]. While
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many time series models may be trained on raw time
series data, the information (and thus relevance) may
likely be found in a latent feature domain such as the
frequency domain [11]. This challenge has only been
addressed in [12], where the authors use gradient-
based methods to backpropagate the relevance into
the frequency domain.

Masking-based methods are an important tool in
XAI due to their high performance across a mul-
titude of domains [9, 13, 14]. Masking-based ap-
proaches learn or estimate the relevance maps by
iteratively applying binary masks to the input and
measuring the resulting change in the output. Espe-
cially optimization-based masking approaches have
shown great promise for time series data [13, 15,
16]. In optimization-based masking approaches, the
relevance is learned by posing an objective that
maximizes the number of masked out features in the
input, while simultaneously minimizing the change
in the model output [17]. The mask is optimized via
gradient descent through the model and the mask
generating function. However, these methods can be
difficult to use due to hyper-parameter tuning. Ad-
ditionally, they suffer from the significant drawback
of requiring access to the model gradients.
Alternatively, model-agnostic methods require

only access to the input and output of the network
and are easily adaptable to a multitude of network
architectures. Prominent model-agnostic methods
are also based on masking and involve estimating the
relevance via Monte Carlo sampling. This category
includes RISE [9] and RELAX [18]. The sampling
based methods have a few clear advantages: they
do not require any complex optimization techniques,
and we can directly constrain the sampling space
to ensure compatibility with our data. While these
methods have been successfully applied for time
series [19, 20], no previous work in this category
has focused on providing relevance maps in another
domain than the input domain.

In this paper, we take inspiration from RISE and
propose the first approach for masking-based XAI
in the frequency domain of time series, FreqRISE.
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We:

• Propose FreqRISE, the first masking-based ap-
proach for providing relevance maps in the fre-
quency and time-frequency domain.

• Provide a comprehensive evaluation of our pro-
posed approach across two datasets and four
tasks.

• Show that masking-based relevance maps in the
frequency and time-frequency domain outper-
form competing methods across several metrics.

2 Masking based explanations

Here, we present a new method for transforming
masks between domains (Section 2.1) and use this
new method to create FreqRISE (Section 2.2), the,
to our knowledge, first masking-based XAI method
operating in the frequency domain of time series.

2.1 Masking in a dual domain

While many time series models are trained directly
on the raw time series data, the time domain is often
insufficient for providing complete explanations [11].
This is due to most XAI methods being built on the
assumption that the explanations are localized and
sparse. However, if two classes are characterized
by e.g. their frequency content, this information
is neither localized nor sparse in the time domain.
We, therefore, propose transforming the signals to
a domain where the information is assumed to be
localized and sparse and to provide the explanations
in this domain.
Our aim is to explain the black box model f(·)

that outputs the class probabilities y ∈ RC from a
time series input X ∈ RV×T , where V is the number
of input variables and T is the length of the time
series. Masking-based methods, such as RISE [9]
and RELAX [18], use masks M ∈ {0, 1}V×T sam-
pled from distribution D, to mask out features in
the input space. Here the n index identifies the n-th
sampled mask. The masking is done through elemen-
twise multiplication such that X̂ (M) = X ⊙ M .
The resulting change in the model output can then
be computed:

ŷ (M) = f(X̂ (M)). (1)

The result is therefore a relevance map over the
input features in the input domain.
Instead, assume an invertible mapping from the

time domain, T , into the domain of interest, S,
g : XT → XS . We can formulate an alternative
masking-based approach, where the masks are ap-
plied in the new domain after which the input is
transformed back into the time domain. One exam-
ple of such mapping is the discrete Fourier transform

(DFT), which maps the signal into the frequency
domain, XS ∈ CV×F . We can then apply masks
M ∈ {0, 1}V×F in the frequency domain and obtain
the masked input in the time domain via the inverse
mapping:

X̂ (M) = g−1 (g (X)⊙M) . (2)

We can then use (1) to obtain the changes in the
model output resulting from the mask.
In this paper, we focus on the frequency domain

and the time-frequency domain, obtained through
the DFT and the short-time DFT (STDFT). How-
ever, the formulation can be extended to other in-
vertible mappings.

2.2 FreqRISE

A prominent masking-based framework is RISE [9].
RISE assumes that the masks M are sampled from
a distribution D. RISE then estimates the rele-
vance, Rc (λ), of class c for a point in input space,
λ, as the expected value of the class probability
ŷc(M) (obtained using (1)) under the distribution
of M conditioned on M (λ) = 1, i.e. that the
point is observed. Here, according to our definition,
λ = (v, t) if defined in the time domain, λ = (v, f)
in the frequency domain, and λ = (v, t, f) in the
time-frequency domain. For a full derivation of the
mathematical details, see the appendix.
For a high accuracy classifier, we expect ŷc to

be to be low when the most important features are
removed and, reversely, to be high when important
features are not masked out. In practice, we can esti-
mate the relevance using Monte Carlo sampling. We
produce N masks and estimate the expected value
as a weighted sum, normalized by the expectation
over the masks [9]:

R̂c =
1

N · E[M ]

N∑
n=1

ŷc(Mn) ·Mn. (3)

Since the masks are applied in the dual domain, the
resulting relevance map is a map over relevances
in this dual domain. In this work, we deal with
univariate time series, i.e. V = 1, however the
methods can be extended to multivariate cases.
We combine the RISE framework with our pro-

posed frequency and time-frequency masking and
call our method FreqRISE. The FreqRISE frame-
work is shown in Figure 1 when using STDFT as
the invertible mapping.

3 Experimental setup

We conduct experiments on two datasets: the syn-
thetic dataset presented in [12] and AudioMNIST
[21]. Both datasets have been shown to have salient
information in either the frequency or time-frequency
domain [12].
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Figure 1. The FreqRISE framework shown when, as an example, using the Short-Time Discrete Fourier Transform
(STDFT) as the invertible mapping, g. g maps XT into the domain of interest, g : XT → XS . Here, we sample N
masks and produce N masked versions of XS . Using the inverse of g, we map back to the time domain, obtain ŷc,
and compute the relevance map as a weighted average over the masks.

3.1 Synthetic data

We use the same synthetic dataset as in [12]. The
dataset is specifically designed to have the salient
information in the frequency domain and therefore
allows us to test the localization ability of the XAI
methods. Each data point is created as a sum over
J sinusoids. J is sampled uniformly from U(10, 50)
:

Xt =

J∑
j

aj sin

(
2πt

Tkj
+ ψj

)
+ ϵ. (4)

We set all aj = 1, randomly sample the phase ψj ∼
U(0, 2π), and add normally distributed noise ϵ ∼
N (0, σ). The length of the signals is set to T = 2560
and all frequency components are sampled as integer
values within the range kj ∼ U{1, 59}. We train
the models to detect a combination of frequencies,
k∗ ∈ {5, 16, 32, 53} from the time series signal. The
classes are created from the powerset of k∗ and we
therefore have 16 classes. Figure 2 shows a sample
from the dataset. We train a 4-layer multilayer

0.0 0.2 0.4 0.6 0.8 1.0
t

Time domain

0 20 40 60
k

Frequency domain

Figure 2. A sample from the synthetic dataset with
salient features at k = {5, 16, 53} marked in blue in the
frequency domain.

perceptron (MLP) with a hidden size of 64 on two
different versions of the raw time series: one with
noise level σ = 0.01 and one with σ = 0.8. In both
cases, we use 105 samples for training. We test the
models on a test set of size 1000 with no noise.

We use FreqRISE to compute relevance maps. We
use the one-sided DFT to transform the signals to
the frequency domain and sample binary masks,

zeroing out single frequencies with p = 0.5 from a
Bernoulli distribution. Similar to recent work [18],
we use N = 3000 masks to obtain relevance maps.

3.2 AudioMNIST

AudioMNIST is a dataset consisting of 30,000 audio
recordings of spoken digits (0-9) repeated 50 times
for each of the 60 speakers (12 female/48 male) [21].
We follow [21] and downsample all signals to 8kHz
and zero-pad all windows to 8000 samples.

We use the same 1D convolutional architecture as
in [21] on the raw time series and train two versions:
one for predicting the spoken digit and one to predict
the gender of the speaker. Since the fundamental
frequency is known to be discriminative for gender
[22], we expect the salient information for the gender
task to be localized in the frequency domain. The
digit task, however, will likely be localized in both
time and frequency, since we expect the numbers to
be discriminated both through their formant infor-
mation [23] (frequency domain) and the ordering of
these in time (time domain).
We use FreqRISE to compute relevance maps in

the frequency and time-frequency domains and stan-
dard RISE in the time domain. We use 1000 data
points from the gender and digit test sets respec-
tively for testing the explanation methods. All rel-
evance maps for AudioMNIST are estimated using
N = 10, 000 sampled masks. All masks are sampled
from a Bernoulli distribution with p = 0.5 on a lower
dimensional grid and linearly interpolated to create
smooth masks. When computing the (Freq)RISE
relevance maps, we use the logits prior to the soft-
max activation, since these show higher sensitivity
to changes in the input.
In the time-frequency domain, we use the one-

sided STDFT with a Hanning window of size 455
and an overlap of 420 samples between subsequent
windows following [21]. In the STDFT domain, we
use binary grids of size 25 × 25. In the time and
frequency domains, we use grids of size 200.
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3.3 Baselines

As baselines, we use Integrated Gradients (IG) [24]
and Layer-wise Relevance Propagation (LRP) [7].
When computing relevance maps in the frequency
and time-frequency domains, we follow [12] and
equip the models with virtual inspection layers,
which map the input into the relevant domains. Due
to relevance conservation, we are restricted to us-
ing rectangular, non-overlapping windows for the
STDFT. We therefore use rectangular windows of
size 455 with no overlap.

3.4 Quantitative evaluation

Due to the lack of ground truth explanations [25],
quantitative evaluation for XAI is performed by
measuring desirable properties [26]. Below we de-
scribe three such desirable properties that we use to
quantify the quality of the relevance maps.

Localization: Localization scores are widely used
to evaluate if explanations are co-located with a
region of interest [13, 18]. For the synthetic data,
we know the ground truth explanations and can
therefore use localization metrics to evaluate the
methods. We use the relevance rank accuracy [27].
Assuming a ground truth mask, GT , of size K and
a relevance map R̂, we take the K points with the
highest relevance. We then count how many of these
values coincide with the positions in the ground truth
mask. Formally, for PtopK = {p1, p2, . . . , pK |R̂p1 >

R̂p2
> · · · > R̂pK

}, i.e. p denotes the position, we
compute:

Relevance rank accuracy =
|PtopK ∩GT |

|GT |
. (5)

Faithfulness: Faithfulness measures to what de-
gree an explanation follows the predictive behaviour
of the model and is a widely used measure for quan-
tifying quality of explanations [12, 16]. We follow
prior works [12, 13] and compute faithfulness as

follows. Given a relevance map, R̂, we iteratively re-
move the 5%, 10%, . . . , 95% most important features
by setting the signal value to 0. We then evaluate
the model performance as the mean probability of
the true class and plot it to produce deletion plots.
Finally, we compute the area-under-the-curve (AUC)
to produce our final faithfulness metric. A low AUC
means that the explanation is faithful to the model.

Complexity: Finally, we evaluate the complexity
of the explanation as an estimate for the informa-
tiveness [28]. The complexity is estimated as the
Shannon entropy of the relevance maps.

4 Results

We present a comprehensive evaluation of FreqRISE
using the experimental setup described in Section 3.

Table 1. Localization (L) and complexity (C) on the
synthetic data.

Low noise Noisy

L (↑) C (↓) L (↑) C (↓)
IG 99.1% 1.10 52.4% 1.96
LRP 99.1% 1.11 63.8% 1.34
FreqRISE 100.0% 7.09 100.0% 7.09

4.1 Synthetic data results

The two models trained on the synthetic dataset
both achieve an accuracy of 100%. Table 1 shows
the localization and complexity scores across the
different methods for both the model trained on the
low noise and the noisy datasets. The results on
the low noise model show that all XAI methods per-
form approximately equal on the localization score,
while IG and LRP yield relevance maps with sub-
stantially lower complexity scores compared to Fre-
qRISE. However, when we move to the noisy model,
the localization score of FreqRISE is unchanged,
whereas both IG and LRP have much lower perfor-
mance. The complexity of the IG and LRP relevance
maps is slightly higher on the noisy model, while
the complexity of the FreqRISE is unchanged. An
example of the computed relevance maps is shown
in the appendix.

4.2 AudioMNIST results

The model trained on the digit classification task
achieves and accuracy of 96.9%, while the model
trained on the gender tasks achieves an accuracy of
98.6%.

Following the procedure described in Section 3.4,
we initially compute the faithfulness results. Fig-
ure 3 (top) shows the deletion plots for the digit clas-
sification task in the frequency and time-frequency
domain. We have also included two additional base-
lines, namely randomly deleting features (Rand.)
and deleting features based on their amplitude
(Amp.). In both domains, the mean true class prob-
ability quickly drops. After dropping only 10% of
the features, FreqRISE has a mean true class prob-
ability of 0.139 in the time-frequency domain and
0.248 in the frequency domain. After this, the value
continues to drop with features being removed.

Figure 3 (bottom) shows the same results for the
gender classification task. Here, the mean true class
probability using FreqRISE is 0.435 after dropping
only 5% of the features in the frequency domain,
and the same value in the time-frequency domain is
0.445. The other methods drop to lower values in the
time-frequency domain, indicating that FreqRISE
struggles more to identify relevant features in the
time-frequency domain.
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Figure 3. AudioMNIST: Deletion plots for both tasks
in frequency and time-frequency domains. We delete
features according to the importance and measure model
outputs. FreqRISE outperforms the baselines in both
domains on the digit task and the frequency domain on
the gender task.

Table 2. AudioMNIST: Faithfulness (top) and Com-
plexity (bottom) scores for explanations in the time (T),
frequency (F) and time-frequency (TF) domains.

Digit (↓) Gender (↓)
T F TF T F TF

IG .183 .252 .197 .470 .428 .389
LRP .168 .205 .214 .401 .431 .420
(Freq)RISE .233 .160 .104 .419 .416 .423

Digit (↓) Gender (↓)
T F TF T F TF

IG 6.93 6.41 5.26 6.57 4.74 4.04
LRP 6.88 5.84 4.67 6.78 5.16 4.16
(Freq)RISE 8.86 8.17 10.82 8.86 8.01 10.78

In Table 2 (top), the faithfulness scores are shown
for both models in all three domains. We notice that
in the time domain, RISE performs either worse
or equivalently compared to LRP. However, when
we move to the frequency domain, the faithfulness
scores are lowest for FreqRISE in both cases. Finally,
when we look at the time-frequency domain, the
faithfulness score increases for FreqRISE on the
gender task, while it decreases on the digit task.
These results indicate that the information is sparser
for the digit task in the time-frequency domain.

Table 2 (bottom) shows the complexity scores
across all methods, domains and tasks. Again, it
is clear that the complexity of the masking based
methods is higher compared to the remaining meth-
ods.

Figure 4 (top) shows an example of relevance maps

Figure 4. AudioMNIST: Gender task. We show rel-
evance maps computed by LRP and FreqRISE in the
time and frequency domain. The salient information is
more localized in the frequency domain.
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Figure 5. AudioMNIST: Digit task. STDFT of the
signal on the left and the FreqRISE relevance map in the
time-frequency domain on the right. The relevance map
shows the benefit of having both the time and frequency
axis, when the describing the digit data.

computed in the time domain on the gender clas-
sification task. Figure 4 (bottom) shows the same
sample in the frequency domain. The sample is from
a female speaker and the model correctly predicts
the class. We see that LRP has a very sparse but
scattered signal in the time domain, while RISE
appears very noisy. Moving to the frequency do-
main, the relevance is much more localized, with
FreqRISE putting most emphasis on the fundamen-
tal frequency, while LRP also focuses on the har-
monics. The fundamental frequency is known to be
discriminative of gender [22].

Figure 5 shows the relevance map computed using
FreqRISE in the time-frequency domain for the digit
task. The spoken and predicted digit is 9. The
STDFT reveals that the signal starts around t =
0.3s, where the relevance map puts most of the
relevance. However, around t = 0.5s, there are two
distinct patterns emerging along the frequency axis.
The fact that the method is allowed to distribute the
relevance differently across frequencies depending on
the time shows the benefit of having both the time
and frequency component when computing relevance
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maps for the digit task.

5 Discussion and conclusion

Time series data is inherently difficult to inter-
pret, due to the complex patterns of the signals
[10]. Therefore, providing relevance maps in a do-
main where information is sparser and more easily
interpretable is desirable. We therefore proposed
FreqRISE, which computes relevance maps in the
frequency and time-frequency domains using model-
agnostic masking methods. Vielhaben et al. [12] pre-
viously produced relevance maps in these domains
using gradient based methods, which are model-
dependent, limiting the usability in cases where
model gradients are not available.
While LRP and IG are able to assign zero rele-

vance, this is generally not the case for Freq(RISE).
As a consequence, RISE and FreqRISE consistently
yield high complexity scores. This is, however, not
necessarily indicative of the perceptual quality of
the relevance maps. The entropy could e.g. be re-
duced through post-processing of relevance maps.
We have included preliminary results on a simple
post-processing scheme in the appendix, showing
that in most cases we can lower the complexity score
to competitive levels while keeping a better faith-
fulness or localization score. Additionally, while
complexity is a useful measure, it should always
be considered in conjunction with localization and
faithfulness scores.
We used a synthetic dataset with known salient

features in the frequency domain to compute local-
ization scores. In the low noise setting, FreqRISE
gave slightly higher accuracy in identifying the cor-
rect frequency components. However, when testing
in the high noise setting, FreqRISE outperformed
the two baseline methods by a large margin (100%
vs. 64%). These results indicate that the gradient-
based methods (IG and LRP) both are susceptible
to noise in the data, which results in a lower local-
ization score in the noisy setting. Clearly, FreqRISE
does not suffer from the same issues and instead
has a stable, high performance independent of the
noise level - likely because it is not dependent on
the gradients of the model.

On AudioMNIST, we measured the faithfulness of
all methods across three domains. RISE performed
either slightly worse or similar to the baseline meth-
ods in the time domain. However, in the frequency
domain FreqRISE gave the best faithfulness scores.
In the time-frequency domain, FreqRISE gave the
best performance on the digit task, but the worst
performance on the gender task. The difference is
likely to be found in the different data properties
of the two tasks. This leads us to believe that Fre-
qRISE is most suitable for providing explanations
in domains where the information is assumed to be

sparse. While the same information can theoreti-
cally be found in e.g. the time domain, the intricacy
of the patterns would require more advanced mask-
ing schemes to identify the same patterns. For the
gender task, the frequency domain is sufficient for
describing the data since the fundamental frequency
is known to be discriminative of gender [22]. Thus,
when moving to the time-frequency domain, unnec-
essary complexity is added to the problem, resulting
in a lower performance by FreqRISE. This leads us
to believe that FreqRISE gives the best performance
when computed in a domain where the salient infor-
mation is sparse. As of now, no existing methods
are able to estimate the ”correct” domain in which
to explain a model. Therefore, domain experts have
to determine which domain is more useful for pro-
viding meaningful explanations. Future work should
focus on developing metrics for measuring the most
informative domains.
Finally, like many other explainabilty methods,

FreqRISE requires choosing a suitable set of hyper-
parameters. This includes choosing an appropriate
size of the lower dimensional grid on which we sam-
ple the binary masks, as well as the number of masks
to use. As of now, we have no principled way of
choosing these hyper-parameters, although one solu-
tion could be to tune the faithfulness and complexity
scores on a small validation set. Another, less sys-
tematic approach, simply requires the user to esti-
mate the granularity of the problem and choose the
grid size based on this. FreqRISE requires a rather
large number of masks (N = 10, 000) in order to pro-
duce high-quality relevance maps for AudioMNIST.
This clearly increases the computational complex-
ity compared to competing methods. Future work
should investigate how to monitor convergence for
potential early stopping.
In conclusion, FreqRISE gives stable, good per-

formance in localization and faithfulness on two
different datasets with a total of 4 different tasks.
Additionally, unlike existing methods, FreqRISE is
completely model-independent requiring no access to
gradients or weights of the models being explained.
As such, FreqRISE is an important next step in
providing robust explanations in the frequency and
time-frequency domain for time series data.
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[2] T. Brüsch, M. N. Schmidt, and T. S. Al-
strøm. “Multi-View Self-Supervised Learning
For Multivariate Variable-Channel Time Se-
ries”. In: 2023 IEEE 33rd International Work-

6



shop on Machine Learning for Signal Process-
ing (MLSP). 2023, pp. 1–6.

[3] P. Giudici and E. Raffinetti. “SAFE Artificial
Intelligence in finance”. In: Finance Research
Letters 56 (2023), p. 104088.
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A Appendix

A.1 Details on the math behind FreqRISE

We closely follow the approach presented in [9], but extend the notation to include FreqRISE, where we
allow for masking in dual domains. First, we reiterate the notation introduced in Section 2.1.
We consider a time series input X ∈ RV×T transformed into some domain, S, through the invertible

transform g : X → XS . Generally, XS =
{
XS | XS : Λ → R3

}
is of size V × TS × F , i.e. Λ =

{1, . . . , V } × {1, . . . , TS} × {1, . . . , F}. If g is the Discrete Fourier transform TS = 1, while if g is the
identity (i.e. we stay in the time domain) F = 1 and TS = T . To ease notation, we will assume V = 1,
but the math can easily be extended to the case where V > 1.
We then sample binary masks M : Λ → {0, 1} from distribution D. The perturbed input X̂ (M) is

then obtained through elementwise multiplication with mask M in domain S and subsequent inverse
transformation through g−1 back to the time domain:

X̂ (M) = g−1
(
XS ⊙M

)
. (6)

We then obtain the outputs ŷc (M) as the class prediction for class, c, using the black box model f :

ŷc (M) = f
(
X̂ (M)

)
c
. (7)

Let us now define the importance, Rc (λ), of element λ = (t, f) as the expected value over all possible
masks M , conditioned on λ being observed, i.e. M(λ) = 1:

Rc (λ) = EM [ŷc (M) | M(λ) = 1] . (8)

Since M is binary, the expectation can be computed as a sum over masks, M ′:

Rc (λ) =
∑
M ′

ŷc
(
M ′)P [

M = M ′ | M (λ) = 1
]
. (9)

Using the definition of conditional distributions, this can be rewritten as:

Rc (λ) =
1

P [M (λ) = 1]

∑
M ′

ŷc
(
M ′)P [

M = M ′,M (λ) = 1
]
. (10)

Now, again since M(λ) is binary,

P
[
M = M ′,M (λ) = 1

]
=

{
0, if M ′ (λ) = 0.

P
[
M = M ′] , if M ′ (λ) = 1.

= M ′ (λ) · P
[
M = M ′] . (11)

Additionally, P [M (λ) = 1] = E [M (λ)]. Substituting this into (10):

Rc (λ) =
1

E [M (λ)]

∑
M ′

ŷc
(
M ′) ·M ′ (λ) · P

[
M = M ′] . (12)

We can now write this in matrix notation, such that the relevance can be computed for all elements, λ,
simultaneously:

Rc =
1

E [M ]

∑
M ′

ŷc
(
M ′) ·M ′ · P

[
M = M ′] . (13)

The relevance in (13) is then empirically estimated through Monte Carlo sampling. We sample N masks,
{M1, . . . ,MN} according to D and normalize by the expectation of M :

Rc ≈
1

N · E[M ]

N∑
n=1

ŷc (Mn) ·Mn, (14)

finally arriving at Equation (3) in the main paper.
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A.2 Design choices for FreqRISE

As with other masking-based approaches, computing the relevance maps for FreqRISE involves choosing a
number of hyper-parameters, i.e. the size of the grid in which to sample binary masks, the probability p
with which is bin is chosen, and the number of masks. As of now, there is no principled way to choose
either and we have heuristically chosen the hyper-parameters based on qualitative assessment on a few
validation samples. A more systematic approach, would be to tune the parameters on a validation set by
choosing a few metrics, such as faithfulness and complexity.

For AudioMNIST, FreqRISE needs a large number of masks to converge (N = 10, 000). We found that
when using fewer masks, the method still finds the relevant bits, but sorting out the irrelevant bits of the
signal requires more masks. Wickstrøm et al. [18] presented theoretical results on computing the number
of masks and found that N = 3, 000 should yield results with a low error. It would be interesting to
investigate convergence properties for our datasets in light of the theoretical results.

Additionally, Mercier et al. [20] propose TimeREISE which uses a multiple mask sizes and sampling
probabilities to compute the relevance maps for each time series. Finally, Cooper et al. [29] apply RISE to
images and propose a hierarchical systematic mapping to reduce the number of masks. Both of these
avenues could be interesting to explore when masking in the frequency domain.

A.3 Post-processing of FreqRISE relevance maps

We do some preliminary experiments to reduce the complexity of the FreqRISE relevance maps through
thresholding. Due to the properties of LRP and IG, both methods are able to assign zero relevance to
specific points in the input space. This is not the case for FreqRISE, due to the weighted average with
which the relevance maps are computed.

We post-process the FreqRISE results through thresholding. Given a relevance map Rc, we produce a
post-processed relevance map Rp

c by computing the p-th quantile, qp and setting all elements, λ, with
value below qp to 0:

Rp
c(λ) =

{
Rp

c(λ), if Rp
c(λ) ≥ qp.

0, otherwise.
(15)

We compare the faithfulness and complexity trade-off for post-processed relevance maps of FreqRISE with
different thresholds p. Additionally, IG and LRP are both able to assign negative relevance to specific
points. However, often when visualizing the relevance maps, negative values will be set to zero [12]. In
the main paper, we set negative values to zero when evaluating the complexity, but not when evaluating
the faithfulness, giving both baseline methods an advantage in either case. Here, we therefore include
LRP and IG results when setting all negative values to 0 (LRP pos. and IG pos.) and when considering
positive and negative values (LRP and IG).

On the synthetic dataset, we set p = 0.997 and achieve a complexity score of 1.17 for both the low noise
and high noise setting, while maintaining a localization score of 100% on both tasks.

All results are visualized in Figure A.1.

Ideally both faithfulness and complexity scores should be low. Thus, an ideal explanation method would
give results in the lower, left quadrant of the plot. From Figure A.1 it is clear that with existing methods,
faithfulness and complexity are typically trade-offs of each other.

For the digit task, FreqRISE consistently gives better faithfulness scores than the baselines independent
of p. In the frequency domain, it is also clear that we are able to reduce complexity scores to a level closer
to the best LRP complexity, while keeping a better faithfulness score (at p = 0.8). In the time-frequency
domain, we are able to lower the complexity, although not to a competitive level. However, here the gap
in faithfulness between FreqRISE and competing methods is quite substantial, indicating that maybe a
higher complexity is needed to properly describe the data. Additionally, it is worth mentioning that for
both LRP and IG using only the positive values does not influence the faithfulness score much, but it
does lower the complexity.

For the gender task in the frequency domain, thresholds up to p = 0.6 still gives better faithfulness
scores than the full LRP and IG relevance maps. Additionally, the complexity score of FreqRISE is
comparable or lower compared to both IG and LRP. Using the non-thresholded FreqRISE relevance map
gives better faithfulness and comparable complexity to full LRP and IG relevance maps. If we use only
the positive values of LRP and IG, the faithfulness score is worse than FreqRISE at all thresholds, but the
complexity is lower. In the time-frequency domain FreqRISE generally performs worse on both faithfulness
and complexity. This is discussed in the main paper.
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Figure A.1. Complexity vs. faithfulness for different post-processing of both FreqRISE, LRP and IG relevance
maps.

Generally, we see that with simple thresholding of the FreqRISE relevance maps, we are able to reduce
complexity of FreqRISE relevance maps while keeping competitive faithfulness scores.
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A.4 Additional relevance maps on AudioMNIST

Additional relevance maps in all domains on the digit and gender task for AudioMNIST.
Figure A.2 shows the same example as Figure 5 in the paper, but also in time and frequency. Figure A.2(a)

shows that LRP seems to highlight most of the STDFT as important, seemingly ranked by the amplitude
of the actual signal. This is not very useful for explanations. The time domain plots show that the
time relevance of LRP seems to be centered around the middle of the signal. While for RISE, the time
relevance is still scattered. In the frequency domain, the information seems more localized for both LRP
and FreqRISE.
Figure A.3 shows an example on the digit task with the digit 0 being spoken. Here, we again see a

distinct pattern in time and frequency for FreqRISE, while LRP seemingly focuses mostly on the lowest
frequency component. In the time domain, the relevance is again scattered for both methods. In the
frequency domain, the relevance is mostly localized on two frequency components for FreqRISE.
Figure A.4 shows the same example as Figure 4 in the main paper, but also in the STDFT domain.

In the STDFT domain, we see that FreqRISE struggles to identify relevant information, whereas LRP
distributes relevance on the three lowest frequency components. This indicates that the frequency domain
is sufficient for explaining the gender task.

Figure A.5 shows an example on the gender task for a male speaker. In the STDFT domain, FreqRISE
seemingly just highlights most of the signal, while LRP again puts emphasize on the three lowest frequency
components. In the time domain, again information is scattered in time. Finally, in the frequency domain,
FreqRISE puts most relevance on the fundamental frequency, while LRP places most relevance on the
second harmonic of the fundamental frequency.
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Figure A.2. AudioMNIST: Digit task. Relevance maps in all three domains for a spoken digit 9 computed using
LRP and FreqRISE.
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Figure A.3. AudioMNIST: Digit task. Relevance maps in all three domains for a spoken digit 0 computed using
LRP and FreqRISE.
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Figure A.4. AudioMNIST: Gender task. Relevance maps in all three domains for a female speaker computed
using LRP and FreqRISE.
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Figure A.5. AudioMNIST: Gender task. Relevance maps in all three domains for a male speaker computed using
LRP and FreqRISE.
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A.5 Results on synthetic data
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Figure A.6. Synthetic data: Relevance maps from the noisy model using each method along with the ground
truth for a sample in dataset.
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