
2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

MULTI-VIEW SELF-SUPERVISED LEARNING FOR MULTIVARIATE
VARIABLE-CHANNEL TIME SERIES

Thea Brüsch, Mikkel N. Schmidt, Tommy S. Alstrøm

Department of Applied Mathematics and Computer Science, Technical University of Denmark

ABSTRACT

Labeling of multivariate biomedical time series data is a la-
borious and expensive process. Self-supervised contrastive
learning alleviates the need for large, labeled datasets through
pretraining on unlabeled data. However, for multivariate time
series data, the set of input channels often varies between ap-
plications, and most existing work does not allow for transfer
between datasets with different sets of input channels. We
propose learning one encoder to operate on all input channels
individually. We then use a message passing neural network
to extract a single representation across channels. We demon-
strate the potential of this method by pretraining our model on
a dataset with six EEG channels and then fine-tuning it on a
dataset with two different EEG channels. We compare models
with and without the message passing neural network across
different contrastive loss functions. We show that our method,
combined with the TS2Vec loss, outperforms all other meth-
ods in most settings.

Index Terms— Self-supervised learning, Message pass-
ing neural networks, Multi-view learning, Multivariate time
series, Sleep staging

1. INTRODUCTION

In recent years, self-supervised learning has shown promising
results in the fields of computer vision and natural language
processing [1, 2]. Self-supervised learning relies on inherent
patterns within the data to enable pretraining on large, unla-
beled datasets, thus facilitating the transfer of learned struc-
tures to smaller labeled datasets, usually called the down-
stream tasks. Obtaining ground truth scoring for biomedi-
cal signals such as electroencephalography (EEG) often re-
quires the expertise of multiple professionals, rendering label
acquisition a challenging and expensive endeavor [3]. Con-
sequently, self-supervised learning methods are particularly
interesting for biomedical time series data.

Many self-supervised learning methods use contrastive
learning to pretrain the networks. Contrastive learning relies
on having both positive and negative pairs, where the positive
pairs are encouraged to be close and the negative pairs distant
in representation space [4]. Non-contrastive self-supervised

learning tasks include the reconstruction of masked input pix-
els and loss functions that only require positive views. In this
work, we focus on contrastive self-supervised learning.

Previous work on contrastive pretraining for time series
data uses various different strategies to create positive pairs.
Broadly speaking, we divide the strategies into three cate-
gories. The first category uses augmentations such as mask-
ing, scaling, or random additive noise. The second category
uses contrastive predictive coding (CPC), where an autore-
gressive model is used to predict future samples. A closely
related strategy uses a combination of masking and CPC to
reconstruct masked out segments within the current sequence.
The third category relies on data that inherently contains mul-
tiple views, such as multiple channels or different modalities.
We refer to the third strategy as a multi-view strategy.

Previous significant work on contrastive pretraining for
time series data includes Eldele et al. [5], who use augmenta-
tions such as permutations and scaling. Furthermore, they
use a temporal contrasting strategy similar to CPC to pre-
dict future augmented samples. Zhang et al. [6] use sim-
ilar augmentations but create a separate encoder in the fre-
quency domain and encourage time and frequency represen-
tations to be close. Yue et al. [7] use random cropping and
masking to augment the input signal as well as a new hier-
archical time series loss to train their model, which they call
TS2Vec. BErt-like Neurophysiological Data Representation
(BENDR) by Kostas et al. [8] comprises a convolutional en-
coder that tokenizes raw input EEG, and a transformer that
contextualizes the tokens. The network is then trained using
a combination of CPC and masking. Kiyasseh et al. [9] and
Deldari et al. [10] both leverage the multi-view strategy for
creating positive pairs. Kiyasseh et al. [9] investigate con-
trastive pretraining for electrocardiography (ECG). They use
both neighboring samples in time and different channels as
positive pairs. Finally, Deldari et al. [10] use different sensor
modalities as positive pairs and present a new loss, COCOA,
tailored for contrastive learning in settings with more than one
view. We focus our work on the multi-view strategy for mul-
tivariate time series data.

A significant challenge for self-supervised learning ap-
plied on multivariate time series is that the number of chan-
nels may vary from application to application. The varying

979-8-3503-2411-2/23/$31.00 ©2023 IEEE

number of channels makes it difficult to transfer between
tasks with different channels [11], and few of the current
methods have a principled way of handling this issue. The
mentioned previous work either pretrain and fine-tune on
the same dataset [5, 7, 10], or discard excess channels or
zero-pad missing channels during fine-tuning and/or pretrain-
ing [6, 8]. The work most closely related to ours is SeqCLR
by Mohsenvand et al. [12]. SeqCLR is a single encoder that
works separately on all channels individually. The encoder
is pretrained using augmentations. During fine-tuning, the
outputs of all input channels are concatenated and used as
input to the classifier.

We propose a channel agnostic network that generalizes
between datasets with varying sets of input channels with no
further preprocessing. We learn a single-channel encoder and
add a message passing neural network (MPNN) after the en-
coder to extract the optimal combination of the individual
channel representations. We use the different channels of the
multivariate time series to create the positive pairs during pre-
training. We demonstrate the use of the MPNN by pretraining
on an EEG dataset with six channels and fine-tuning on an
EEG dataset with two different channels, and compare differ-
ent loss functions in the pretraining phase. Our results show
that when combined with the TS2Vec loss, our method out-
performs all other methods on most sample sizes.

2. METHODS

2.1. Channel agnostic setup

We use a convolutional encoder to extract representations
from the raw EEG signals. Our encoder follows the architec-
ture in BENDR [8] with the exception that we take only one
channel as input. Given an input X ∈ RN×C×Tin with N
samples of raw EEG with C channels, and each with a length
of Tin, we take each channel, xc, and apply the same encoder
Hθ to obtain the representation hc:

hc = Hθ(x
c), xc ∈ RN×1×Tin , hc ∈ RN×L×Tout , (1)

where L is the output dimension of the encoder and Tout is
the length after downsampling in the encoder. This setup is
visualized in Figure 1 for C = 6 channels. Based on these C
representations, we use two different methods for creating the
different positive views zv for contrastive learning.

In the first approach, we simply use each representation
hc for each view:

zv = hc, (c, v) ∈ {(1, 1), . . . , (C,C)}. (2)

This approach results in V positive views, zv ∈ RN×L×Tout .
The V positive views form C(C − 1)/2 positive pairs per
datapoint to use for contrastive learning.

When fine-tuning on a downstream task with Cd chan-
nels, this approach produces Cd representations, [z1, . . . ,zCd

].

𝑿 ∈ ℝ!×#×$!

Input:
𝒙% ∈ ℝ!×&×$!

		𝒉!

		𝒉"

𝒉#

		𝒉$

		𝒉%

		𝒉&

Output:
𝒉% ∈ ℝ!×'×$"

H𝜽

H𝜽

H𝜽

H𝜽

H𝜽

H𝜽

Extract representations
using the same encoder

Fig. 1. We apply the same encoder Hθ to each of the C input
channels xc to obtain C representations hc. Here, the setup
is shown for C = 6 channels.

To obtain a single representation across all channels, i.e., to
use for classification, we add a linear layer of size Cd × 1,
which combines the Cd representations into one representa-
tion. The linear layer is optimized during fine-tuning.

In the second approach, for each new batch, we randomly
divide the C representations into two groups, g1 and g2, with
C1, and C2 = C − C1 representations respectively, where
C1, C2 ≥ 2. Figure 2 shows an example partitioning. The
partitioning (both exact split and partition size) of the repre-
sentations is chosen randomly for each batch.

In both groups, we form a fully connected graph and use
identical message passing neural networks (MPNN) to extract
the intra-group context for both groups individually:

zv = zgv = MPNNϕ(gv), v ∈ [1, 2]. (3)

This approach results in V = 2 positive views, zv ∈
RN×L×Tout . The two positive views form one positive pair
for each data point to use for contrastive learning.

2.2. Message passing neural network

As stated in eq. (3), the MPNN is used to extract the intra-
group context for each of the two groups. MPNNs were orig-
inally formalized in [13] and we follow their definition. An
MPNN acts on graphs, and in our case, we form a fully con-
nected directed graph within both of the groups, gv . This
means that the input graph consists of Cv vertices with vertex
features h.

The MPNN consists of two phases, the message passing
phase, and the readout phase. The message passing phase
takes place in K rounds, defined by the message passing net-
works Mϕk

, and an update operation Uk. In each round, we
compute the message and update the state for all h in gv:

mh
k+1 =

1

Cv − 1

∑
h′∈gv\{h}

Mϕk

(
hk,h

′
k

)
hk+1 = Uk

(
hk,m

h
k+1

)
.

(4)

We define Uk

(
h,mh

)
= h +mh and use a neural network

for each Mϕk
. Mϕk

acts on the concatenation of hk and h′
k.

	𝒉!

	𝒉"

	𝒉#

	𝒉$

	𝒉%

	𝒉&

𝒛𝒈!

𝒛𝒈"

𝒉! ∈ ℝ"×$×%!
Output:
𝒛𝒈" ∈ ℝ"×$×%#

𝒉"

𝒉# 𝒉$

𝒉&

𝒈!

𝒉!

𝒉%

𝒈"	

Randomly split
into two groups

MPNN'	

MPNN'	

Message passing on
fully connected graphs

Fig. 2. In our second multi-view setting, we split the C repre-
sentations into two random groups consisting of at least two
channels each. Here, group 1 consists of C1 = 2 randomly
chosen representations and group 2 ccomprises the remaining
C2 = 4 representations.

Finally, the readout phase computes the final representation
across the graph according to:

zgv = RϕR

 1

Cv

∑
h∈gv

hK

, (5)

where RϕR
is a neural network.

Since the same Mϕk
is applied to all nodes at round k

and RϕR
simply operates on the mean across all final hid-

den states, the MPNNϕ is able to compute the intra-graph
representation on graphs of arbitrary sizes. This enables
us to choose the size of the input graphs during pretrain-
ing randomly. Furthermore, for a downstream task with
Cd channels, we can simply produce the representations
[h1, . . . ,hCd

], form a fully connected graph g, and use the
pretrained MPNNϕ to compute one final representation zg .

2.3. Contrastive losses

For each of the two settings, we pretrain a neural network with
three different contrastive losses.
NT-Xent loss [1]: Given a batch of N samples consisting
of V views, the loss is computed pairwise for each pair of
flattened views, zv ∈ RN×L·Tout and zw ∈ RN×L·Tout , also
referred to as the positive pairs. The remaining 2N − 1 sam-
ples across both views are used as negative examples. Let
s
(w,v)
τ(i,j) =

zw
i ·zv

j

τ∥zw
i ∥·∥zv

j ∥
denote the τ -scaled cosine similarity

between zw
i and zv

j . The loss for one positive pair then be-
comes:

ℓ
(w,v)
i = ln

exp
(
s
(w,v)

τ(i,i)

)
N∑
j

exp
(
s
(w,v)

τ(i,j)

)
+

N∑
j ̸=i

exp
(
s
(w,w)

τ(i,j)

) (6)

We compute ℓ(w,v) for all positive pairs in the batch and av-
erage over them:

L(w,v)

NT-Xent = − 1

N

N∑
i

ℓ
(w,v)
i (7)

This operation is repeated for all combinations of views:

LNT-Xent =
1

V (V − 1)

V∑
v

V∑
w ̸=v

L(w,v)

NT-Xent (8)

TS2Vec loss [7]: The TS2Vec loss also takes each combi-
nation of positive pairs. However, instead of flattening the
tokens produced by the encoder, the loss takes the temporal
relations in the representations into account. This is done by
constructing two different versions of the negative examples
and using these to compute a temporal loss and an instance
loss, respectively. In the temporal loss, the negative examples
are the remaining time stamps within the same sequence, i.
In the instance loss, the negative examples are the remaining
sequences in the batch at the same time stamp, t:

ℓt
(w,v)

(i,t) = ln
exp

(
zwi,t · zvi,t

)
Tout∑
t′

exp
(
zwi,t · zvi,t′

)
+

Tout∑
t′ ̸=t

exp
(
zwi,t · zwi,t′

)
ℓi

(w,v)

(i,t) = ln
exp

(
zwi,t · zvi,t

)
N∑
j

(
exp zwi,t · zvj,t

)
+

N∑
j ̸=i

exp
(
zwi,t · zwj,t

)
(9)

The temporal loss and instance loss are added to form the dual

loss, L(w,v)
dual = − 1

2NT

N∑
i

Tout∑
t

(
ℓt

(w,v)
(i,t) + ℓi

(w,v)
(i,t)

)
. The loss is

then computed hierarchically by iteratively applying a max-
pool operation across the temporal dimension of the represen-
tations and recomputing the dual loss to form L(w,v)

TS2Vec [7]. Fi-
nally, this loss is also computed for all combinations of views:

LTS2Vec =
1

V · (V − 1)

V∑
v

V∑
w ̸=v

L(w,v)

TS2Vec. (10)

COCOA loss [10]: The COCOA loss is meant to reduce
the computational complexity associated with NT-Xent when
contrasting more than two views and also acts on flattened
versions of z. The loss separately computes the cross-view
correlation (i.e., correlation between the positive pairs) as:

Li
C =

V∑
v

V∑
w ̸=v

exp
(
1/τ − s

(w,v)

τ(i,i)

)
(11)

and the intra-view discriminator. The intra-view discrimina-
tor computes the correlation between the negative examples.
The negative examples are only taken from the corresponding
view, v, of the remaining examples in the batch:

Lv
D =

1

N

N∑
i

N∑
j ̸=i

exp
(
s
(v,v)

τ(i,j)

)
. (12)

The cross-view correlation and intra-view discriminator are
then combined into the final loss:

LCOCOA =

N∑
i

Li
C + λ

V∑
v

Lv
D (13)

3. EXPERIMENTAL SETUP

The implementation is available at https://github.
com/theabrusch/Multiview_TS_SSL.

3.1. Data

For pretraining, we use the Physionet Challenge 2018 (PC18)
dataset [14, 15], which is a dataset annotated for sleep staging.
We use the EEG data from the 994 subjects of the training set
to pretrain the models. The dataset contains the following six
EEG channels; F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and
O2-M1. All of the data is resampled from 200 Hz to 100
Hz. We split the subjects 0.8/0.2 for training and validating
and then segment the entire dataset into 30s windows with no
overlap. This results in 710,942 windows for pretraining and
178,569 windows for tracking the validation performance.

For fine-tuning, we use the SleepEDFx dataset [15, 16].
The dataset contains 153 nights of sleep recordings from 78
subjects, and the data is annotated for sleep staging. Sleep
staging gives rise to the following five classes; wake, N1, N2,
N3 and R (the last four are different phases of sleep). The aim
is to predict the sleep stage for windows of length 30s. We
use the EEG data, which contains two channels; Fpz-Cz and
Pz-Oz, sampled at 100Hz. We split the subjects 0.6/0.2/0.2
for training, validating, and testing. The splits are kept fixed
throughout all experiments. Again, we segment the data into
30s windows with no overlap, yielding 122,016 and 37,379
windows available for training and validation and 36,955 win-
dows for testing. In practice, we downsample the number
of training and validation windows to simulate a setting with
only a few labels available for fine-tuning. This process is
described in Section 3.4.

All windows in the pretraining and fine-tuning datasets
are standardized, so each channel has zero mean and a stan-
dard deviation of one.

3.2. Model architecture

We follow [8] and use 6 convolutional blocks consisting of a
1D convolution, a dropout layer, a group normalization layer,
and a GELU activation function. The kernel width is 3 in the
first layer and 2 in the remaining 5 layers, and the stride is
set to the same value as the width. We use 256 kernels for all
intermediate layers and set the output dimension of the final
layer to 64. Finally, we add a readout layer with kernel width
and stride set to 1. This gives an output dimension hc ∈
RN×L=64×Tout=33.

For the MPNN, we use a single linear layer followed by a
dropout layer and a ReLU activation layer for all Mϕk

. The
linear layer only acts on the second dimension of hc, i.e. the
same weights are applied at all time steps t ∈ Tout. Thus,
since it takes in two hidden states at a time, the dimension of
the weights are 2 · 64× 64. For RϕR

, we use two linear layers
separated by a dropout layer and a ReLU activation function.

3.3. Pretraining setup

During pretraining, all of our models are trained for 10
epochs. We use the AdamW optimizer with a learning rate of
10−3 and a weight decay of 10−2. We apply a dropout rate of
10% between all layers in the network. All of the pretrained
models are trained using a batch size of 64.

We benchmark our results against BENDR [8] and Seq-
CLR [12]. For BENDR, we use the original hyperparam-
eters with no additional fine-tuning. Since our input to the
model is smaller than what was used in the original paper, it
is likely that more optimal masking parameters exist. Follow-
ing their code, the pretraining is stopped if the network learns
to precisely reconstruct tokens. This happens in our version
of BENDR after 5900 iterations (around halfway into the first
epoch).

For SeqCLR, we pretrain a version of their recurrent neu-
ral network (SeqCLR R), since this is reported to show the
best results on the sleep staging dataset. We pretrain on win-
dows of size 30s since this yielded better results than the 20s
reported in the paper. We adjust their augmentations to our
sampling frequency and input size. All implementation de-
tails are in the Git repository.

3.4. Fine-tuning

When fine-tuning without the MPNN, we use a linear layer
across all zc to obtain one representation z ∈ RN×64×33

for classification. With the MPNN setup, we simply use the
pretrained MPNNϕ to obtain one representation across all
channels. Subsequently, we average pool along the time di-
mension to obtain T = 4 and flatten the representation, i.e.,
zfinal ∈ RN×4·64=256. We then use a single linear layer fol-
lowed by a softmax operation that classifies each window.

All of our models are fine-tuned with a learning rate of
5 · 10−4. We use the AdamW optimizer with a weight decay
of 10−2. The batch size is set to 32. As we are generally inter-
ested in settings with few labels available for fine-tuning, we
test the model by sampling a balanced set from the full dataset
available for fine-tuning. We sample 10, 25, 50, 100, 200,
500, and 1000 data points per class respectively, and com-
pare the performance of each of the pretrained models with
the same models trained from scratch. We sample the same
number of data points from the validation set. All models are
fine-tuned for a maximum of 40 epochs, using early stopping
on the validation loss with a patience of 7 epochs. We do
this for both of the following settings: one where we optimize
the entire network during fine-tuning and one where we only
optimize the final linear layer(s) during fine-tuning.

Since the BENDR encoder acts on a fixed input dimen-
sion, it is less trivial to fine-tune on a dataset with a different
set of input channels. We insert the channels of the fine-tuning
dataset at the position of the closest channel in the pretraining
dataset. Therefore, we insert the channel Fpz-Cz at the po-
sition of both the F3-M3 and the F4-M1 channels, and insert

https://github.com/theabrusch/Multiview_TS_SSL
https://github.com/theabrusch/Multiview_TS_SSL

the channel Pz-Oz in the same position as O1-M1 and O2-M1.
We insert zeros at the positions of the remaining channels.

4. RESULTS AND DISCUSSION

We run the fine-tuning experiments for five different seeds
(i.e., both the data sampling and model initialization are re-
seeded five times) and report the averaged scores.

Figure 3 (top) shows the results when optimizing the en-
tire network during fine-tuning. Table 1 shows a subset of
the sample sizes and also includes the results from BENDR
and the different versions of SeqCLR. All scores reported are
balanced accuracy scores. Since it is a five-class problem,
the chance level is 20%. The table shows that the two net-
works trained from scratch yield similar results. However,
the MPNN model has a lower score for fewer samples and
higher scores for more samples compared to the non-MPNN
model. This is likely due to the higher amount of trainable
parameters in the MPNN model, which makes it more likely
to overfit on small sample sizes. It is also clear that all of
the pretraining schemes improve the score across all sample
sizes. Both BENDR and SeqCLR R improve the results over
the models trained from scratch, but at a lower margin com-
pared to the remaining models. We also pretrained a model
with the same encoder architecture as our own models, but us-
ing the SeqCLR augmentations for contrastive learning. This
model showed similar results as the SeqCLR R model, in-
dicating that the multi-view pretraining strategy is beneficial
when transferring between tasks with variable input channels.

Comparing the pretrained MPNN models to the pretrained
non-MPNN models, the picture is less clear. Where the
MPNN model trained with the COCOA loss outperforms the
non-MPNN model on smaller sample sizes, the MPNN+NT-
Xent model performs worse than its non-MPNN counterpart
on all sample sizes. Nonetheless, both Table 1 and Figure 3
clearly demonstrate that the MPNN model trained with the
TS2Vec loss outperforms all other pretraining schemes at
all sample sizes. This is especially the case for the smallest
sample size where the margin to the second highest score is
12.5%. It therefore seems that the MPNN clearly improves
the pretraining when combined with a loss that explicitly
considers the temporal relation in the data.

Table 2 and Figure 3 (bottom) show the results when
freezing the encoder and MPNN during fine-tuning. Since
we only optimize linear layers for these results, it is clear that
the representations learned during pretraining for almost all
models are transferable to a dataset with completely different
channels. However, the BENDR results are comparable to the
results of the randomly initialized models. The table shows
that while the MPNN+COCOA loss and MPNN+NT-Xent
models achieve a slightly higher score than their non-MPNN
counterparts on the smallest sample size, they perform worse
on all other sample sizes. The MPNN+TS2Vec model again
outperforms all other models for sample sizes smaller than

101 102 10320

30

40

50

60

70

Te
st

ac
cu

rac
y (

%)

Optimize entire network

101 102 103

Number of samples per class

20

30

40

50

60

70

Te
st

ac
cu

rac
y (

%)

Optimize only classifier

COCOA
COCOA, MPNN

NT-Xent
NT-Xent, MPNN

TS2Vec
TS2Vec, MPNN

Scratch
Scratch, MPNN

Fig. 3. Balanced accuracy scores when optimizing the entire
network (top) and freezing the encoder (bottom) during fine-
tuning. Scores are averaged across 5 seeds.

200 samples per class, whereas the non-MPNN+TS2Vec
model achieves the highest performance for 200 samples or
more per class.

Thus, the results indicate that the pretrained MPNN helps
in optimally combining the two channels for smaller sample
sizes. When more data is available, the non-MPNN models
are able to learn a better combination using the linear layer
that is also optimized during fine-tuning. When fine-tuning
on two channels, the complexity of inter-channel interactions
is limited. We hypothesize that the pretrained MPNN is even
more useful when fine-tuning on datasets with more than two
channels and thus increased inter-channel complexity.

Finally, we reiterate that the pretraining of BENDR was
not optimized for our dataset. It is therefore likely that more
optimal pretraining settings exist. However, the results still
demonstrate the issue with existing pretraining schemes,
where transferring between datasets with varying input chan-
nels is non-trivial. The methods presented here alleviate this
issue.

5. CONCLUSIONS

Self-supervised learning for multivariate time series suffers
from the limitation that the input variables may vary from
pretraining task to downstream task. Therefore, we proposed
a channel-agnostic pretraining scheme applying the same en-
coder to all incoming channels and combining the channels
using an MPNN. We compared our method to a network
trained without the MPNN and the corresponding models
with no pretraining and repeated our experiments for three

Model Pretraining Samples per class

10 50 100 1000

BENDR BENDR .284 .494 .543 .657
SeqCLR R NT-Xent .308 .460 .559 .643
SeqCLR R Scratch .234 .362 .398 .564
Wo. MPNN COCOA .416 .549 .598 .682
Wo. MPNN NT-Xent .443 .581 .622 .698
Wo. MPNN TS2Vec .485 .605 .625 .719
Wo. MPNN Scratch .268 .355 .426 .624
W. MPNN COCOA .479 .622 .631 .675
W. MPNN NT-Xent .388 .550 .595 .689
W. MPNN TS2Vec .610 .656 .666 .725
W. MPNN Scratch .225 .335 .441 .643

Table 1. Balanced accuracy scores after optimizing the entire
network during fine-tuning averaged across 5 seeds.

Model Pretraining Samples per class

10 50 100 1000

BENDR BENDR .201 .215 .227 .263
SeqCLR R NT-Xent .256 .305 .308 .577
SeqCLR R Scratch .278 .325 .338 .363
Wo. MPNN COCOA .346 .463 .488 .505
Wo. MPNN NT-Xent .355 .493 .522 .563
Wo. MPNN TS2Vec .403 .555 .573 .658
Wo. MPNN Scratch .196 .203 .204 .273
W. MPNN COCOA .414 .467 .466 .477
W. MPNN NT-Xent .379 .458 .462 .459
W. MPNN TS2Vec .483 .584 .601 .644
W. MPNN Scratch .203 .214 .224 .260

Table 2. Balanced accuracy scores after freezing the encoder
and the MPNN during fine-tuning averaged across 5 seeds.

different contrastive loss functions. We demonstrated the ca-
pability of the model by pretraining on a dataset with six EEG
channels using a multi-view strategy for contrastive learning
and fine-tuning on a dataset with two different EEG channels.
We also compared to a model pretrained using augmentations
for contrastive learning.

Our results showed that the MPNN model trained with
a TS2Vec multi-view loss outperformed all other methods
at all sample sizes when the entire network was optimized
during fine-tuning. The same pattern was repeated when
freezing the pretrained network during fine-tuning, although
the MPNN+TS2Vec model was slightly outperformed by the
non-MPNN+TS2Vec model at larger sample sizes. Our re-
sults demonstrated the potential of MPNNs combined with
the multi-view strategy in creating a channel-agnostic pre-
training scheme allowing for great flexibility when transfer-
ring between variable-channel datasets.

6. REFERENCES

[1] Ting Chen et al., “A simple framework for contrastive learning
of visual representations,” in Proceedings of the 37th Interna-
tional Conference on Machine Learning, 2020.

[2] Jacob Devlin et al., “Bert: Pre-training of deep bidirectional
transformers for language understanding,” 2019.

[3] Magdy Younes, “The case for using digital eeg analysis in
clinical sleep medicine,” Sleep Science and Practice, vol. 1,
no. 1, 2017.

[4] R. Hadsell et al., “Dimensionality reduction by learning an
invariant mapping,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2006.

[5] Emadeldeen Eldele et al., “Time-series representation learning
via temporal and contextual contrasting,” in Proceedings the
30th International Joint Conference on Artificial Intelligence,
2021.

[6] Xiang Zhang et al., “Self-supervised contrastive pre-training
for time series via time-frequency consistency,” in Advances
in Neural Information Processing Systems, 2022.

[7] Zhihan Yue et al., “TS2Vec: Towards universal representation
of time series,” Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 2022.

[8] Demetres Kostas et al., “BENDR: Using transformers and a
contrastive self-supervised learning task to learn from massive
amounts of eeg data,” Frontiers in Human Neuroscience, vol.
15, 2021.

[9] Dani Kiyasseh et al., “Clocs: Contrastive learning of cardiac
signals across space, time, and patients,” in International Con-
ference on Machine Learning, 2021.

[10] Shohreh Deldari et al., “COCOA: Cross modality contrastive
learning for sensor data,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 6, no. 3, 2022.

[11] Antoine Guillot and Valentin Thorey, “Robustsleepnet: Trans-
fer learning for automated sleep staging at scale,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering,
vol. 29, 2021.

[12] Mostafa Neo Mohsenvand et al., “Contrastive representation
learning for electroencephalogram classification,” in Proceed-
ings of the Machine Learning for Health NeurIPS Workshop,
2020.

[13] Justin Gilmer et al., “Neural message passing for quantum
chemistry,” in Proceedings of the 34th International Confer-
ence on Machine Learning, 2017.

[14] Mohammad M. Ghassemi et al., “You snooze, you win: the
physionet/computing in cardiology challenge 2018,” in Com-
puting in Cardiology Conference, 2018, vol. 45.

[15] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and Phy-
sioNet: Components of a new research resource for complex
physiologic signals,” Circulation, vol. 101, no. 23, 2000.

[16] B. Kemp et al., “Analysis of a sleep-dependent neuronal feed-
back loop: the slow-wave microcontinuity of the eeg,” IEEE
Transactions on Biomedical Engineering, vol. 47, no. 9, 2000.

	 Introduction
	 Methods
	 Channel agnostic setup
	 Message passing neural network
	 Contrastive losses

	 Experimental setup
	 Data
	 Model architecture
	 Pretraining setup
	 Fine-tuning

	 Results and discussion
	 Conclusions
	 References

