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Abstract Hyperspectral imaging can be used
in assessing the quality of foods by decompos-
ing the image into constituents such as protein,
starch, and water. Observed data can be con-
sidered a mixture of underlying characteris-
tic spectra (endmembers), and estimating the
constituents and their abundances requires ef-
ficient algorithms for spectral unmixing. We
present a Bayesian spectral unmixing algorithm
employing a volume constraint and propose an
inference procedure based on Gibbs sampling.
We evaluate the method on synthetic and real
hyperspectral data of wheat kernels. Results
show that our method perform as good or bet-
ter than existing volume constrained methods.
Further, our method gives credible intervals

Morten Arngren

Technical University of Denmark, DTU Informatics,
Bldg. 321, Richard Petersens Plads, DK-2800 Lyngby
and FOSS Analytical A /S, Slangerupgade 69, DK-3400
Hillergd

E-mail: ma@imm.dtu.dk, moa@foss.dk

Mikkel N. Schmidt

Technical University of Denmark, DTU Informatics,
Bldg. 321, Richard Petersens Plads, DK-2800 Lyngby
E-mail: mns@imm.dtu.dk

Jan Larsen

Technical University of Denmark, DTU Informatics,
Bldg. 321, Richard Petersens Plads, DK-2800 Lyngby
E-mail: jl@imm.dtu.dk

Mikkel N. Schmidt - Jan Larsen

for the endmembers and abundances, which al-
lows us to asses the confidence of the results.

Keywords Bayesian source separation,
Hyperspectral image analysis, Volume regu-
larization, Gibbs sampling

1 Introduction

Classic image acquisition and analysis is based
on three color bands (red, green, and blue)
which is sufficient for human visualization. In
the context of identifying or extracting mate-
rial constituents of e.g. foods, these three wide
channels are rarely enough. Hyperspectral im-
age analysis can include more than 100 chan-
nels and hence provides the opportunity to
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Fig. 1: Pseudo RGB image of a wheat kernel and
the associated pre-processed spectrum for the selected
pixel.



capture detailed spectral information required
in analysis of foods. Figure [Il illustrates a hy-
perspectral image of a wheat kernel with a cor-
responding pre-processed spectrum from 950 —
1650nm.

In a hyperspectral image acquisition system
based on light transmission, mixing of the ma-
terials constituents can be considered linear
according to Lambert-Beer’s law. In a reflec-
tance spectroscopy system, which we use in the
experiments in this paper, non-linear mixing
can occur, when incident light interacts with
several constituent materials. For simplicity,
however, it is reasonable to assume [0] that
the mixing process is predominantly linear and
that non-linear effects can be neglected.

Given a set of N preprocessed M-dimensional
mixed spectra, stored as columns in a matrix
X € RM*XN_ the unmixing problem consists
of estimating the non-negative spectral signa-
ture of the pure constituent components (end-
members) as well as their relative contribu-
tions (fractional abundances) for each of the
N spectra. The linear mixing can then be ex-
pressed as a rank K linear matrix factoriza-
tion,

X =WH +e, (1)

where K is the number of endmembers. The
non-negative spectral signatures of these end-
members are contained in the columns of W €
RY™K and H € R¥*Y holds the fractional
abundances for the N elements. The matrix
€ denotes the residual noise. Each of the ob-
served pixels can thus be considered a mix of
latent pure constituents. In foods, these con-
stituents are typically water, protein, starch,
oil, etc.

In addition to the non-negativity constraint,

the fractional abundances must sum to ondzl in
order to maintain proper interpretation. The

1 In the literature, the constraints that abundances
must sum to one is sometimes refereed to as an addi-
tivity constraint.

constraints imposed on the matrix factoriza-
tion can thus be expressed as

K
Wik > 0, hip >0, and th,n =1. (2)
k=1

The non-negativity and sum-to-one assump-
tion of H implies a multidimensional simplex
structure of the modeled data, where the ver-
tices denote the endmembers. The simplex is
illustrated for two endmembers in one dimen-

sion in Figure and for three endmembers
in two dimensions in Figure
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(b) Simplex with three endmembers in two dimen-
sions.

Fig. 2: Nllustration of endmembers as the vertices of a
simplex. The two illustrations show how the points vio-
lating the constraints are located outside the simplices
formed by the endmembers (purple circles).

The data might not span the entire simplex
due to lack of mixing of the constituents. For
food applications, pure endmembers appear ra-
rely as the observed pixels are almost always a
mix of constituents. This means the observed
data will tend to concentrate around the cen-
ter of the simplex and very few samples can be
expected at the vertices. The data acquisition
is further subject to additive noise and thus
the simplex structure will not be perfect. Fig-
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Fig. 3: Scatterplot of first and second principal com-
ponent of the preprocessed wheat kernel hyperspectral
data. The preprocessing pipeline used is described in
Section

ure[3illustrates the simplex structure of wheat
kernel image pixels.

Different approaches can be used to unmix the
hyperspectral image data. One approach is to
analyse the data using convex geometrical meth-
ods. Plaza et al. [I4] gives a comparative anal-
ysis of a set of endmember extraction meth-
ods based on geometrical analysis incl. the N-
FINDR method [19], VCA [9], PPI [3] and
other manually based endmember selection ap-
proaches.

Another approach is based on statistical mod-
els of the data. As the acquired data is non-
negative by nature, non-negative matrix fac-
torization (NMF) has received wide attention
[RITTLT2/T3]. The basic linear NMF model min-
imizes the squared error || X — W H||? sub-
ject to non-negativity constraint on the ele-
ments in W and H. These constraints are
however rarely sufficient to capture the end-

members in an unmixing problem. Furthermore,
the solution is not unique since any solution
in which all the data are encapsulated by the
endmembers will have the same cost; hence,
additional regularization is required. This can
be expressed through a regularized cost func-
tion,

C(W, H) = Y| X — WH|]?
+ v Jw(W) + BJn(H), (3)

where J,(W) and Jy(H) are regularization
terms for the endmembers and fractional abun-
dances respectively.

Sajda et al. [I5] present an NMF algorithm
with additional constraints on the amplitude
of the estimated spectral components, with im-
proved endmember determination. An Lo-norm
sparsity prior on both the endmembers W and
the fractional abundances H is incorporated
by Pauca et al. [13], which also leads to im-
proved estimation of the endmembers. A spar-
sity prior on the fractional abundances H en-
courages pure spectra among the observed pix-
els, but in analysis of food data this is rarely
the case. Thus, the sparsity prior might not be
useful in food applications.

A different approach is to incorporate a regu-
larization based on the volume of the simplex
spanned by the estimated endmembers. This
encourages a decomposition in which the esti-
mated endmembers lie closer to the data. The

volume of a simplex with K vertices {w.1, ..., 'w;K}E

and K < M is given by (denoted vol)

T W) = % Vdet(W ' W), (4)

where the column vectors of the matrix W =
[W.rw., .. W) T W.p, Wy TWep ... W, W ]

2 In the notation used in this paper, matrices and
vectors are denoted by capital and lower case bold
letters respectively. Two subscripts denotes a sub ma-
trix or sub vector with the corresponding rows and
columns, where a colon denotes all indices, and m de-
notes all indices except m. For example, w.; denotes
the kth column of W and w, ; denotes the mth row
of W with the kth element removed. A single element
of the matrix W is denoted by w,,x-
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Fig. 4: The volume of a K=3 vertex simplex in two
dimensions, illustrating how the volume is computed
based on relative endmember vectors.

point to the vertices of the simplex from an
arbitrarily selected vertex, w,. For K = M
Eq. @) reduces to JyN(W) = det(W).
The case of three endmembers in two dimen-

sions is shown in Figure [

Several authors have proposed algorithms for
spectral unmixing that employ different vol-
ume based regularizations. Miao and Qi [7]
present an NMF algorithm that incorporates
the following volume regularization (denoted
minimum volume constraint or muc),

JIV(W) o det*(C + BU (W — pul')), (5)

where U, is a projection matrix defined as the
K — 1 first principal components of the ob-
served data, X, p denotes the sample mean
of X, B=[%] and C = [°/ |. This volume
regularization captures the volume of the cen-
tered simplex in the subspace defined by the
K — 1 first principal eigenvectors and thus in-
corporates a noise reduction. This approach is
quite intuitive, but due to its dependency on
the observed data in U, it does not have the
interpretation as a prior in a Bayesian frame-
work.

Schachtner et al. [I6] propose a different vol-
ume regularization approach based on the squa-
red volume of the parallelepiped spanned by
the endmembers and origo, and they propose
an optimization method based on the NMF

multiplicative update framework. The regular-
ization term can be expressed as (denoted par-
allelepiped or pp)

JPP(W) = det(W W), (6)

and can be seen as a surrogate to Eq. (),
where the absolute vectors W are used instead
of the simplex spanning vectors W. This mea-
sure, however, is sensitive to the location of
the data simplex as opposed to the simplex
volume in Eq. (@)). This can potentially lead to
movement toward origo when minimizing the
volume. Since the regularization is expressed
in terms of a squared volume, large volumes
will be penalized relatively stronger than small
volumes.

Common for the three regularization terms bas-
ed on the determinant is that they measure
volume. Hence, they will tend to shrink the
volume, but when the regularization is strong,
the K-dimensional volume will collapse to a
(K —1)-dimensional subspace of which the vol-
ume becomes zero.

Another approach, which is not based on a de-
terminant criterion, is to form an approximate
volume regularization based on euclidian dis-
tance measures. In the ICE algorithm, Berman
et al. [2] implement a simplex volume measure
as the sum of squared distances between all
the vertices of the simplex. Equivalently, we
incorporate a measure based on the sum of
squared distances from the vertices to the cen-
troid shown in Figure[H and given by (denoted
dist),

M
Jgist(W) - Z W,y (I — %llT) w;: (7)
m=1
K K
1 2
=3 o> wal;,  ®
k=1 k=1

This regularization term is not sensitive to the
location of the simplex as the pp regulariza-
tion is. With a large regularization, this mea-
sure will not collapse the simplex onto a lower
dimensional subspace, but will shrink the sim-
plex from each vertex towards the centroid.
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Fig. 5: The dist estimates the volume of a simplex
based on the vertices euclidian distance to the mean
center.

It further has the desirable property of being
computationally inexpensive, as it does not re-
quire the computation of a determinant.

The vol, pp, and dist regularization terms can

be given an interpretation as priors in a Bayesian

framework, as they do not depend on the ob-
served data. This is further discussed in the
next section.

Common to the volume constrained spectral
unmixing methods we have discussed so far is
that they specify a regularized cost function
and solve for the endmembers by numerical
optimization. A different approach for hyper-
spectral unmixing is to build a probabilistic
model and treat endmember extraction as a
Bayesian inference problem. This requires the
definition of an appropriate likelihood func-
tion and priors for the endmembers W and
fractional abundances H, which is closely re-
lated to the choice of cost function and regular-
ization terms. The Bayesian approach further
has the advantage of providing credible inter-
vals in addition to an improved estimate of the
endmembers and fractional abundances in the
form of posterior mean estimates and thereby
allowing for a more enhanced analysis.

Previous work on Bayesian spectral unmixing

include Ochs et al. [10], who introduce a Bayesian

spectral decomposition (BSD) algorithm based
on an atomic prior. Moussaoui et al. [§] present

a Bayesian method for separating non-negative
mixtures of NIR data based on a hybrid Gibbs-

Metropolis-Hastings sampling procedure. Schmidt

and Laurberg [I8] present a Bayesian NMF
based on an exponential sparsity prior.

In this paper, which extends our previous work

[1], we present a Bayesian spectral unmixing

method with a volume prior for unmixing hy-

perspectral images. The method embodies three
different volume priors related to the wvol, pp,

and dist measures in Eq. @), @) and (). The

method incorporates non-negativity constraints
for the spectra as well as non-negativity and

sum-to-one constraints for the fractional abun-

dances. For model inference, we present a Mar-

kov chain Monte Carlo (MCMC) sampling pro-

cedure. The details of the method are described

in the next section and we refer to the method

as BayesNMF-Vol.

For comparison to our proposed Bayesian ap-
proach, we have implemented optimization based
endmember extraction methods using the muc,
pp, and dist volume regularization terms in
Eq. @), @ and [@). Our implementation is
similar to the methods presented in previous
work, but is based on a projected gradient NMF
framework denoted as NMF-Vol. The sum-to-
one constraint for the fractional abundances
is not included in the work of Schachtner et
al. [I6] and is implemented as a soft constraint
by Miao and Qi [7] in their algorithm. This
leads to a trade-off between describing the ob-
served data and respecting the sum-to-one con-
straint. In our NMF-Vol framework the sum-
to-one constraint is implemented using with a
variable substitution approach, which guaran-
tees that the constraint is fulfilled. We evaluate
both the NMF-Vol and BayesNMF-Vol meth-
ods on synthetic an real hyperspectral image
data of foodsd.

In Section [2] we present our Bayesian volume
constrained NMF model as well as the MCMC
sampling procedure. The synthetic and real

3 Both algorithms are available as a Matlab toolbox

for download at www.ToBePosted.coml




data used in the experiments are described in
Section Bl with a description of the pre-proces-
sing procedure used. Finally, in Section [ we
evaluate how the proposed method can extract
the true endmembers and corresponding frac-
tional abundances, and compare with existing
methods.

2 Bayesian NMF with volume prior

The spectral unmixing methods presented in
the previous section (except for muc) can be
given a Bayesian interpretation: They can be
seen as maximum a posteriori (MAP) estima-
tors. The data fit term || X — W H]|? corre-
sponds to a Gaussian likelihood, and the reg-
ularization terms, v.J,(W') and SJp,(H) cor-
respond to priors over the parameters W and
H . Using a Bayesian approach, we are not lim-
ited to computing point estimates, such as the
MAP estimator, but we can compute the full
posterior distribution of the parameters. This
can then be used to estimate the parameters
and their credible intervals. When we are ul-
timately interested in a point estimate of the
parameters, better estimators than the MAP
can be computed, such as the posterior mean
or median, which are optimal under squared
and linear loss respectively.

2.1 Motivating the Bayesian approach

To further motivate the use of Bayesian meth-
ods for spectral unmixing, we consider a very
simple one-dimensional example, which clearly
demonstrates the differences between the MAP
and the Bayesian approach. Consider the case,
where we have N measurements, xnﬂ which
are points on the non-negative real line (see
Figure[6]). We now wish to model these data us-
ing the non-negative linear factorization from

4 For simplicity, we use a slightly different notation
in this section.

Xy = W-h,

Fig. 6: One-dimensional linear factorization. Data x,
(circles) are points on the non-negative real line. Since
hn € [0, 1], w must be greater than the maximum data
point.

Eq. (@), which in this case can be written as
T, = w - hy + €,. For simplicity, we consider
the noise free situation, ¢, = 0, which results
in a likelihood that requires all data points to
be modeled exactly,

N
p(x|w, h) = H §(xn —w - hy). 9)

The prior over w is chosen as a flat uninfor-
mative (improper) distribution over the non-
negative real numbers, which can be thought
of as a uniform distribution between zero and

infinity,
= 1l ! I0<w< 10
p(w)= lim 10 <w <) (10)
x I{w >0]. (11)

Here, 1[-] denotes an indicator function, which
has the value one when its argument is true
and zero otherwise. The prior for h is chosen
as uniform between zero and one,

N
p(h) =] 1[0 < h, <1]. (12)

n=1

Our intuition about this model is that w will
take some value greater than the maximum
data point, and h,, will indicate the fractional
distance at which x,, lies. The prior on w cap-
tures our ignorance about the location of w,
and the prior on h,, states that it corresponds
to a proper fraction between zero and one.
Data points can be generated from the model
by first selecting a random w from the prior,
and then for each data point selecting a ran-
dom h,, between zero and one. The generated
data, x,,, will be uniformly distributed between
0 and w, and in the limit of infinitely many



data points, intuition says that w can consis-
tently be estimated as the maximum of the
observed data points.

Using Bayes’ rule and collecting multiplicative
constants, the posterior density of w and h is
given by

1
p(w, hlz) =

NI

N

Hé(mn—w-hn)

n=1 N

x 10 <w] JJI0<h, <1], (13)

where Z is a normalization constant. It is clear
from the posterior, that a MAP estimate of w
and h can be found by choosing any w greater
than the maximum data value, and then choos-
ing hy, = Z=. Any solution in which the range
[0, w] encapsulates the data, has the same pos-
terior probability density, and the MAP esti-
mate is thus not uniquely defined. For that
reason, the MAP estimate is not particularly
meaningful in this example; however, this is
not because the model is ill defined. The poste-
rior has a ridge of constant probability density,
but in the Bayesian approach we are interested
in probability mass rather than density. In-
sight can be gained by looking at the posterior
marginals, which are found by integrating over
the posterior density. This can be done ana-
lytically in this simple example, but requires
more elaborate methods such as Markov chain
Monte Carlo in the general multidimensional
matrix factorization case.

The marginal density of w is given by

plule) = [ o hlz)an (1)

xw N1 [Tmax < W], (15)
where & ax = max,, (x,). The posterior margin-
al captures the intuition that w must be greater
than the maximum data point, but moreover,
it exhibits a polynomial decay, and thus its
mass is concentrated in the region close to T ax-

In the limit N — oo, the marginal posterior

will be infinitely peaked at xyax. Similarly, the
posterior marginal of h,, is given by

p(hn|x) = /RN p(w, hlz)dh;dw (16)

In

ochﬁ’zdl[()ghng ] (17)

Tmax

which in the limit N — oo is infinitely peaked
Tn

Tmax

In the multidimensional hyperspectral unmix-
ing problem discussed in this paper, data vec-
tors are modeled as lying inside a K-simplex,
and the objective is to identify the endmem-
bers (the vertices of the simplex). With non-
informative priors, the MAP estimate for this
problem is not unique, as discussed previously,
since any simplex which encapsulates the data
vectors is a MAP solution, analogous to the
simple example above. Using an informative
prior, such as the volume priors discussed pre-
viously, will encourage the simplex to be small,
and thus overcome the problem of a non-unique
MAP solution. As the example above suggests,
when doing full Bayesian inference the non-
uniqueness of the MAP solution is not an issue
of concern — even when using non-informative
priors. The reason is that although the maxi-
mum of the posterior is not unique, the poste-
rior density itself is uniquely determined.

In addition to making the MAP estimate well
determined, the different volume priors sug-
gested in the literature also serve another pur-
pose. Real data from hyperspectral imaging
problems do not in general exactly obey the
linear mixing property, and there might be out-
lying data points, etc. Thus, the regularization
parameter 7y in the volume prior can be used
to push the algorithm towards a good solution.
In the following we derive a Bayesian inference
procedure for hyperspectral unmixing, which
incorporates three different volume priors.



2.2 Model

We model the joint probability distribution of
the endmembers, W, and the fractional abun-
dances, H, as well as the noise, conditioned
on the observed data, X, and a set of model
hyper-parameters, 7. To this end we choose a
suitable noise model as well as reasonable prior
distributions over all parameters in the model.

2.2.1 Noise model

We model the noise, €, as independent and
identically distributed white Gaussian noise,
which gives rise to the following likelihood func-
tion,

P(XIW, H,0?)

N M

H H xmn|wm:h:n; 02) ) (18)
where N (z|p,0%) = —2—exp ((f;gf) is the

Gaussian probability density function. Note that
the negative logarithm of the likelihood func-
tion corresponds to the squared error criterion
which is the first term in Eq. (3.

The likelihood has a single parameter, the noise
variance, o2, for which we choose a conjugate
prior, i.e., an inverse-Gamma distribution,

(oo, ) = ZG(o* |, B) (19)

() ()

(20)
2.2.2 Model of fractional abundances

For the fractional abundances, H, the prior
must enforce non-negativity as well as the con-
straint that the abundances for each pixel must
sum to unity. We choose a uniform prior on the
unit simplex,

O(H]I[Z

k=1

K
k=1

(21)

which is arguably the simplest and most nonin-
formative prior that expresses these constraints.

2.2.3 Model of endmembers

We choose a prior distribution for the end-
members, that encourages the simplex spanned
by the estimated endmembers to be small, and
which includes the constraint that each ele-
ment in the endmember matrix must be non-
negative,

p(Wy) oc e 17w (W) I [wyn > 0].

=
emps

m=1

(22)

The reason for choosing a prior proportional
to e~ 7/»(W) ig that the negative logarithm of
the prior then corresponds to the regulariza-
tion term, .J,,(W), in the cost function de-
fined in Eq. @)). Thus, there is a direct parallel
between the methods discussed in the intro-
duction and our Bayesian probabilistic model.
Specifically, we consider three different volume
measures,

JPP(W) = det (WTW) (23)
TV (W) = det(W ' W), and (24)
K 2
Tt w) =" k__zwk (25)

k=1

JPP(W') measures the squared volume of the
parallelepiped defined by the endmembers and
the origin, J5Y (W) is (K!)? times the squared
volume of the simplex spanned by the end-
members, and J3(W) measures the sum of
squared distances from the endmembers to their
centroid. We have chosen these three measures
of the simplex volume, because they can all
be written as quadratic polynomials when con-
sidered as functions of a single element w,,
which is easy to see, since the determinant is
linear in its argument. For this reason, the
prior has the form of a truncated Gaussian,



when considered as a function of a single el-
ement w,,;. This makes it possible to derive
a direct Gibbs sampling procedure, as we de-
scribe in the next section. The parameter -,
which is common for these three volume priors,
determines the strength of the volume penalty.
In this paper, we study how the strength of vol-
ume prior influences the solutions and in our
experiments we generate sets of solutions for a
range of values of v as an explorative analysis.
If a single solution is of interest, v can also be
modeled hierarchically, or a good value for ~
can be found by cross validation or Bayesian
model comparison.

2.2.4 Posterior

Using Bayes’ rule, the posterior is given by

p(W,H|X,H)
_pX|W,H, o®)p(H)p(W|y)p(a®|a, B)
p(X)

)

(26)

where H = {a, 8,7} are hyperparameters. In
the following we let P = {W, H,0?} denote
the parameters of the model.

2.3 Gibbs sampler

A Gibbs sampling procedure [4] can be used to
infer the posterior distribution of the param-
eters of the model, P. In Gibbs sampling, we
sequentially draw samples from the posterior
of each parameter, conditioned on all other pa-
rameters. It can be shown that the sequence of
samples computed constitute a Markov chain
for which the stationary distribution is the pos-
terior in which we are interested. Due to our
choice of priors, we can sample from all con-
ditional distributions directly using standard
methods, which obviates slower sampling pro-
cedures such as rejection sampling.

2.83.1 Sampling the noise variance

Because we have chosen a conjugate prior for
the noise variance, o2, its conditional distribu-
tion has the same functional form as the prior:
It is an inverse-Gamma,

p(0*| X, P\o?) = IG(0®|a, B), (27)

where the parameters are given by

a+ sNM, (28)

«

- M N
B=p+ % Z Z (xmn - 'wm:h:n)2 : (29)

m=1n=1

Samples from this distribution can be gener-
ated using standard methods.

2.8.2 Sampling fractional abundances

The conditional density of the fractional abun-
dances, H, arises from the product of the Gaus-
sian likelihood and the uniform prior on the
unit simplex and it hence has the form of a
Gaussian constrained to lie on the unit sim-
plex,

p(h;n|X, P\h.,,) x N(h‘:n|ﬁn= Sn)

N K K
< []1 th,m = 11 [T 1. = 0], (30)
k=1 k=1

n=1

and its posterior conditional parameters are
given by

fi, = (WW)"'Wlk,, (31)
2, =c2(Ww) L (32)

Samples from the constrained Gaussian den-
sity can be generated using using the method
described by Schmidt [17].
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2.3.83 Sampling endmembers

The conditional distribution of the endmem-
bers, W, arises from the product of the Gaus-
sian likelihood and the volume penalizing prior.
As noted earlier, the conditional prior has the
form of a truncated Gaussian,

o¢ N (Wrnke | My 82,01 [Wint, > 0], (33)

assuming W satisfies the non-negativity con-
straint. The values of my,, and s%m depend on
the choice of J,,(W). Using this, the posterior
conditional is a truncated Gaussian

p(wmk |X7 P\“’mk)

o N (Wit i, T )1 1w > 0], (34)

with parameters given by
G = S, + (hishy)o ™ (35)
Hmk = 5mk (mmksmia (36)
+ (@nh, —w, HhL)o ™). (37)

Samples from this distribution can be gener-
ated using the methods described by Geweke [5]
and Schmidt [17]. What is left is to derive ex-
pressions for my,; and s2 ;. for each of the three
volume measures in Eq. (2Z3H23).

For the determinant based measures, we use
the following expression for the determinant
of a symmetric matrix,

det [Z b(” — adet (C — 1bb") (38)
=adet(C)(1-2b"C7'b) (39)
= adet(C) —b'adj(C)b,  (40)

where (B8] is the expression for the determi-
nant of a block matrix, (39) follows from the
matrix determinant lemma, and in ([@0) we have
used the definition of the matrix adjugate. Us-
ing this, for —vJPP we arrive at

Sre = 7 (di —

2
Mmk = Sy YW

w,, Akkw ) (41)
iAW L i, (42)

where d;; and Aj; are the determinant and
adjugate of WEW i respectively, and for —~.J3Y

we get
smt =7 (A = B z;;;ﬁ’ ) (43)

where p # k, and d};fc and Afcfc are the deter-

~ T ~
minant and adjugate of W.; W ;. respectively.
For —yJdist we get

1
T E (I

K #£k

(45)

Details of the derivations can be found in a

technical note at [www.ToBePosted.coml

3 Data acquisition and pre-processing

The goal of this work is to develop useful meth-
ods for unmixing hyperspectral images of wheat
kernels. A wheat kernel consists of many dif-
ferent constituents, where the majority is wa-
ter, starch, protein and oil. Hence we expect
to extract 4 — 5 endmembers including back-
ground in our analysis. For the acquisition of
the image, a hyperspectral NIR line scan cam-
era from Headwall is used from 900-1700nm
in 165 bands. Hence each acquired image be-
comes a 3-way tensor of size 320 x lines x 165.
Two hyperspectral images of 14 wheat kernels
are acquired on both front and back side, de-
picted in Figure [1

Fig. 7: The raw acquired image of the front side of the
wheat kernels in pseudo colors.
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Fig. 8: Flowchart of pre-processing pipeline.

Prior to the image data being subjected to our
unmixing algorithm a series of pre-processing
steps are carried out shown in Figure

Initially the peripheral spectral range from 900-
950nm and 1650 — 1700nm are removed due
to the poor signal-to-noise ratio of the cam-
era sensor. Afterwards, the raw image data is
compensated for white reference and dark cur-
rent background spectra to remove light source
characteristics and sensor offset. In order to
suppress noise, each line was scanned twice and
averaged.

The light scattering effects induced in the ob-
served data are in our case compensated in two
steps. First each spectra is converted to ab-
sorbance by a negative log-transform to obey
Lambert-Beer’s law for light transmission. Sec-
ondly a scatter correction step aligns the spec-
tra as shown in Figure [0 As sparse spectral
peaks are not prominent in NIR data, low or-
der scatter correction is applied as the resid-
ual from a first order polynomial fit. This ap-
proach still preserves the simplex structure as
shown in Figure

For our analysis, the individual wheat kernels
are extracted or cropped from the images by
identifying and removing the pure background
pixels from the data set. This segmentation
is achieved by discriminating the first princi-
pal component applied on the image data de-
picted in Figure A few background pixels
are left around the kernel periphery as illus-
trated in Figure [[dlin order to capture an en-
tire grain kernel. This further allows the back-
ground to be identified as a single endmember

1300 1400 1500 1600

1000 1100 1200

Wavelength [nm]

2 L 1 i I i L 1
1000 1100 1200 1300 1400 1500 1600
Wavelength [nm]

Fig. 9: The observed spectra before and after the affine
scatter correction (above and below respectively).
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-0.05 0.2 0 0.1 0.2
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-0.15 0 -0.4 -0.1 -0.2
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Fig. 10: Principal component images of the wheat ker-
nel data set with corresponding associated PC spectra
enumerated E1-E5.

1 2 3 4
Fig. 11: A few segmented kernels with a little back-
ground included in the periphery.

component in our subsequent unmixing. The
final hyperspectral image data set is then rep-
resented as an unfolded matrix, X € RM*N
where each M-dimensional column vector .,
is a pre-processed spectrum of a pixel.

For reference spectra of pure food constituents
(protein, starch and oil) are acquired using the
same camera system and pre-processed as de-
scribed. These measurements can act as refer-
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Fig. 12: Normalized spectra of pure basic food con-
stituents. The water spectrum may suffer from poor
SNR as HoO has extremely high absorption rates from
1400 — 1700nm.

ences in evaluating unmixed spectra and are
shown in Figure Initially the spectral pro-
files of protein and starch appear similar in
most of the wavelength range. The most promi-
nent spectral difference is around 1450-1550nm
as shown in Figure Any relocation of
the peak can be used to indicate different pro-
tein/starch mixtures and hence to interpret
unmixing spectral results.

4 Simulations

Our two volume regularized spectral unmixing
algorithms, NMF-Vol and BayesNMF-Volwere
evaluated in a set of simulations using syn-
thetic data with different profiles and known
labels. Next, our BayesNMF-Vol model was
applied to real hyperspectral image data of
wheat kernels.

4.1 Synthetic data

A set of synthetic datasets with different pro-
files of noise levels and dimensionality were
produced with full mixing, i.e. the generated
samples spanned the entire simplex. Several
synthetic datasets were created with different
amount of endmembers, varying data dimen-
sionality, and noise level. The first experiments
have few endmember in a low-dimensional space.
The next include a realistic number of end-
members and data dimensions found in real
hyperspectral images. Our final experiments
are conducted with a small sample size, where
the dimensionality of the data is greater than

the number of samples. Table [l lists the differ-
ent synthetic data set profiles. Each dataset
was based on uniform distributed randomly
generated endmembers W used to produce dif-
ferent amounts of fractional abundance sam-

ples H.

The samples were generated using the sim-
plex point picking procedure leading to a uni-
form distribution of the generated samples H
over the unit simplex. The procedure exploits
the fact that the simplex can be considered a
Dirichlet distribution with all parameters set
to 1. Initially uniform random samples between
[0; 1] are drawn as hy,; and processed as h =
—10g(hyni)- They are afterwards scaled to hy, ., =
hin/ Y Pk, VE. Figure[[3illustrates an ex-
ample of a synthetically generated dataset as
a principal component scatterploty).

The synthetic datasets were initially analyzed
using NMF-Vol with three different regular-
izations; the muc (@), pp @) and dist () mea-
sures. All algorithms were initialized from ran-
domly selected observed data points among
X and a long exponential range of regular-
ization parameter values v were applied from
(107 — 10%]. Finally, the endmember MAP
estimates W, for the different regulariza-
tions were found. Similarly, our BayesNMF-

5 All scatterplots in this paper are presented as sub-
space projections onto the first and second PC based
on the data points.
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Table 1: List of synthetic data sets. Boldfaced will be
used for illustration.

Endmembers Dim. Noise Var.  Samples
ID K M o2 N
1 3 3 10—4 3000
2 3 3 10-3 3000
3 3 150 104 3000
4 3 150 102 3000
5 5 150 10— 5000
6 5 150 103 5000
7 5 150 101 5000
8 5 150 10~4 50
9 5 150 10-3 50
10 5 150 10~2 50
0.3
0.2
0.1r
o or
O
2 01
-0.2
-0.3
o4 ‘ ‘ ‘ ‘
-0.4 -0.2 0 0.2 0.4 0.6

PC1

Fig. 13: Scatter plot of the synthetic data for, 1st and
2nd PC. Note the uniform distribution of the samples
over the unity simplex. (Dots denote data points and
crosses denote endmembers.)

Vol method was applied to the same datasets
with a similar range of appropriate regulariza-
tion. We used the tree different volume pri-
ors; pp @3), sv 24), and dist ([28). For each
regularization level we generated 3000 Gibbs
samples and disregarded the initial 2000 sam-
ples as burn in to calculate the posterior mean
endmember estimates. A more thorough sim-
ulation generating 12000 Gibbs samples incl.
2000 burn-in samples were used to produce
and evaluate the credible intervals. Due to the
light regularization latent in the BayesNMF-
Vol algorithm caused by likelihood normaliza-
tion a non-informative prior of v = 0 was suf-
ficient for this latter simulation.

Results of a subset of our experiments (bold-
face in Table[Il) are shown in Figures T4HIT il-
lustrating the converged endmember estimates

for both algorithms with all regularization ap-
proaches and with interconnecting lines for the
different regularization levels. The models suc-
cessfully capture the data structures with more
samples than dimensions and reveal similar per-
formance in endmember extraction W. The
BayesNMF-Vol model successfully captures the
endmembers on par with the three regular vol-
ume regularized NMF models. There is, how-
ever, a clear difference between the two ap-
proaches: With low regularization, the NMF-
Vol methods find endmembers outside the data
simplex, and thus need a suitable regulariza-
tion to give a reasonable answer. This is espe-
cially visible in Figure The BayesNMF-
Vol with low regularization gives solutions close
to the true endmembers, and higher regular-
ization tends to shrink the simplex further as
desired. A major advantage is the possibility
to compute credible intervals for the endmem-
bers, as depicted in Figures This
means the confidence of the estimate can be
evaluated. Increasing the regularization encour-
ages smaller volumes, as expected, but is not
necessarily required for the Bayesian method.
We do expect, however, that it will be useful
in real data to counteract noise and outliers.

In practice the different regularizations all sup-
press the noise to enhance the simplex struc-
ture in the data. Depending on the level of
noise a suitable level of regularization can be
found and hence the unmixing performance
across the parameters are expected to be com-
parable.

The data structures with fewer samples than
dimension are a bit more difficult to unmix as
seen in Figure [[7 The estimated endmembers
fluctuate more due to the lack of structural
representation in the small amount of samples.
This is also manifested in the larger variance
for the BayesNMF-Vol method in Figure

The differences between the determinant and
distance based volume regularizations, as dis-
cussed in the introduction, is illustrated in Fig-
ure[I8 With increasing regularization strength,
the dist prior shrinks toward the center of the
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(b) BayesNMF-Vol with posterior mean endmember es-
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estimates. Bold red line is 90% credible interval.

Fig. 14: Scatterplot of unmixing result with parame-
ters ID =2, M = 3,K = 3,02 = 10~3. Different regu-
larization levels are shown with interconnecting lines.

simplex, whereas both the pp and the sv priors
initially shrink the simplex and eventually col-
lapses the simplex onto a line along the prin-
cipal eigenvector. This result is intuitive, since
the collapsed simplex has zero volume, but still
extends along a direction that can explain the
variance of the data.
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(a) NMF-Vol showing MAP estimates.
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(b) BayesNMF-Vol with posterior mean endmember es-
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(¢) BayesNMF-Vol zoomed with post. mean endmember

estimates. Bold red line is 90% credible interval.

Fig. 15: Scatterplot of unmixing result with parame-
ters ID = 4, K = 3, M = 150,02 = 10~2. Different
regularization levels are shown with interconnecting
lines.

4.2 Wheat kernel data

The wheat kernel data comprises of 14 grains,
where 4 are selected with front and back side
to be used for the unmixing, i.e, a total of 8
kernel images. Based on their biological prop-
erties, wheat kernels consists of many differ-
ent constituents, where the majority is water,
starch, protein and oil, i.e. we expect to ex-
tract 4 — 5 endmembers incl. background in
our analysis.
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Fig. 16: Scatterplot of unmixing result with parame-
ters ID = 7,K = 5,M = 150,02 = 10~ !. Different
regularization levels are shown with interconnecting
lines.

A set of reference concentrations for the con-
stituents are unfortunately not available, so
we perform a subjective evaluation of the un-
mixing results. The 4 kernels may suffer from
only small variations in the protein level be-
tween the pixels, which means that there is
a strong correlation with other constituents.
In such case the spectral profile of protein is
almost impossible to extract. Principal com-
ponent scatterplots of the wheat kernel data
suggest a simplex structure of 3-4 components
as illustrated in Figure
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(a) NMF-Vol showing MAP estimates.
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(¢) BayesNMF-Vol zoomed with post. mean endmember
estimates. Bold red line is 90% credible interval.

Fig. 17: Scatterplot of unmixing result with parame-
ters ID = 10, K = 5, M = 150,02 = 10~2. Differ-
ent regularization levels are shown with interconnect-
ing lines.

The BayesNMF-Vol algorithm was initialized
with pp regularized NMF-Vol endmember esti-
mates in order to avoid unnecessary long burn-
in periods. The pp prior was also chosen for
the unmixing and a suitable prior parameter, v
was found empirically through manual exper-
iments. Figure 20] shows the estimated poste-
rior mean endmembers for K = 4 endmembers
and 10000 Gibbs samples having disregarded
initial 10000 burn-in samples.
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Fig. 18: Scatterplot of unmixing result with parame-
ters ID =3, K =3, M = 150,02 = 10~ 4.

Fig. 19: PCA scatter plot of the wheat kernel data
indicating a strong simplex structure in the first 3 PC.
This suggests 3 — 4 endmembers latent in the data set.

The spectral profiles of the endmembers, illus-
trated in Figure[21(a)l shows how the 2nd and
4th spectra designate the starch and protein
content. The most prominent difference is the
position of the peak at appr. 1450nm. indicat-
ing different mixtures of protein and starch as
compared with the reference measurements in

Figure [12(b)

Of the 4 kernels (front and backside) a single
decomposed wheat kernel is illustrated in Fig-
ure Initially the background has been
extracted by the model as the 1st component.
The protein and starch spectral profile have
also been identified very clearly along with a
spatial distribution in the 2nd and 4th com-
ponent. Similarly the oil in the germ part can
be identified primarily from the spatial distri-
bution. Finally the residual reveals very little
structure suggesting a successful decomposi-
tion.
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(a) Scatterplot of estimated simplex.
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(b) Zoomed, bold red line is 90% credible interval.

Fig. 20: BayesNMF-Vol analysis of wheat kernel data.
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Fig. 21: The 2nd and 4th extracted spectral endmem-
ber (green and cyan) are easily identified as starch/pro-
tein matrix comparing to figure
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4.3 Discussion

All the volume based NMF methods described
show light sensitivity to the number of com-
ponents, K. If K is too large, excessive com-
ponents are typically split up in two. In con-
trast component will be merged if K is too
small. We have found that the regularization
terms / priors based on the volume as com-
puted using the determinant has a sometimes
fatal sensitivity to linear dependencies among
the estimated endmembers leading to a col-
lapsing volume. This can occur if the number
of components K used in the analysis is greater
than the true number of components in the
data. In such situation, the excess endmem-
ber can cause the simplex to collapse and the
volume regularization will be rendered inop-
erative. The euclidian distance based volumes
does not suffer from the same issue as it simply
shrinks the volume according to the strength
of the regularization/ prior. It can also occur
that a strong regularizations, i.e. large value
of v, leads to a collapse of the volume, as it is
never allowed to expand and capture the data.
A useful approach to estimate the true amount
of endmembers K is to conduct a regular PCA
scatterplot and evaluate the required number
of components to capture the simplex struc-
ture. Prior knowledge can also be used such as
general biological properties for wheat kernels
for instance, similar to our analysis in section
Wi

In addition, our BayesNMF-Vol algorithm con-
ducts light regularization in it self on the es-
timated endmembers as discussed. For a flat
prior distribution p(W) with v = 0, the Bayes-
NMF-Vol still encourages small volumes and
does not necessarily require regularization to
give meaningful results. This also means the
observed data point may not be encapsulated

entirely when using BayesNMF- Vol with v = 0.

The synthetic data we used were limited to
full mixing profiles, where the entire simplex
is spanned with generated samples. In many
real world datasets this might not always be

true, as for our wheat kernel dataset for in-
stance. Future improvement would therefore
be to generate synthetic dataset with differ-
ent mixing profiles to evaluate our methods
performance in this area.

Both the NMF-Vol and BayesNMF-Vol are
available as a Matlab toolbox with a few ex-
amples at [http://www.ToBePosted.com|

5 Conclusion

We have proposed a Bayesian method for spec-
tral unmixing, employing a volume based prior

suitable for hyperspectral image analysis of foods.

Results on synthetic data sets indicate simi-
lar or better unmixing performance compared
to existing volume regulated NMF models and
can further give credible intervals.

In addition we have identified known issues
and limitations to our methods and proposed
several remedies and approaches to circumvent
them. This has further given rise to improve-
ments and future work.

In a concrete food application of decomposing
wheat kernels into constituents our methods
prove successful and can be used as part of
assessment of the quality of foods.
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