Comparing Structural Brain Connectivity by the Infinite Relational Model
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Abstract—The growing focus in neuroimaging on analyzing
brain connectivity calls for powerful and reliable statistical
modeling tools. We examine the Infinite Relational Model
(IRM) as a tool to identify and compare structure in brain
connectivity graphs by contrasting its performance on graphs
from the same subject versus graphs from different subjects.
The inferred structure is most consistent between graphs
from the same subject; however, the model is able to predict
links in graphs from different subjects on par with results
within a subject. The framework proposed can be used as a
statistical modeling tool for the identification of structure and
quantification of similarity in graphs of brain connectivity in
general.
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I. INTRODUCTION

The human connectome [1f], [2] constitutes a formidable
network formed by trillions of connections between billions
of neurons [[1]. While current technologies cannot measure
the full human connectome, functional and diffusion mag-
netic resonance imaging are key non-invasive techniques for
measuring brain connectivity at a spatial resolution in the
order of cubic-millimeters. Functional connectivity can be
estimated by quantifying similarity between blood oxygen
level dependent (BOLD) responses between brain regions
[3]], [4]], whereas structural connectivity between gray-matter
regions can be derived from tractography approaches, see
also [5].

Using tools from network science, researchers have ana-
lyzed graphs of brain connectivity in terms of their func-
tional segregation and integration as quantified by graph
measures such as the clustering coefficient and shortest path
properties, see also [4]], [6]. In [7] structural connectivity
graphs were derived between 998 regions of interests (ROI)
spanning the whole brain for five subjects (one subject
was scanned twice) using tractography based on diffusion
spectrum imaging. These graphs were found to include a
structural core as well as distinct structural modules [[7]].

With the growing focus in neuroimaging on modeling
graphs of brain connectivity, there is a need for powerful
and reliable statistical modeling tools that can identify latent
structure. A further challenge is to compare different con-
nectivity graphs, e.g. to assess similarities across different
subjects, measuring modalities, etc. The Infinite Relational

Model (IRM) [8[]-[10] is a probabilistic generative model of
structure in relational data (graphs), in which the nodes of
the graph are partitioned into groups with statistically similar
connectivity patterns. The number of groups is automatically
inferred from data. The IRM can be used to quantify
how similar two brain connectivity graphs are either by
comparing the group structure estimated for two graphs or by
fitting the model on one graph and using the result to predict
the other graph, where a low prediction error indicates that
the graphs are similar.

In this paper we discuss the following question: Can
the infinite relational model reliably be used to estimate
latent group structure and quantify the similarity between
brain connectivity graphs? We address this by contrasting
the performance of the IRM on graphs from the same
subject versus graphs from different subjects, expecting that
similarity should be greater on graphs from the same subject
than on graphs from different subjects. As the inference in
the IRM is based on Markov chain Monte Carlo (MCMC)
we use multiple restarts to assess potential mixing issues
of the sampler. To compare graphs we examine normalized
mutual information as a measure of consistency of the in-
ferred group structure and predictive log-likelihood and area
under curve (AUC) of the receiver operator characteristic
to estimate how well a model fitted on one graph can
predict another graph. The proposed framework extends to
the modeling of other types of brain networks and forms a
principled statistical modeling tool for quantifying both the
number of functional and structural units in brain networks
as well as comparing brain connectivity in general.

II. METHODS

The infinite relational model is a non-parametric Bayesian
generative model for complex networks independently pro-
posed in [8], [9]. The model is an extension of the stochastic
block model [[11] to include an unbounded number of
clusters based on the Chinese Restaurant Process (CRP)
(see also [12] for an introduction to the IRM.) The generative
model for the IRM is given by

z ~ CRP(a), Groups
Mim ~ Beta(8", 87), Interactions
A~ Bernoulli(nz“zj), Links.
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Figure 1: Left:

The model partitions the nodes into groups z (z; = m means
node ¢ is assigned to group m). Links are formed between
nodes in groups [ and m independently with probability 7;,,,,
and o, 8T, and S~ are hyperparameters of the model. As
the beta prior on 7 is conjugate to the Bernoulli likelihood
this parameter can be collapsed such that
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the beta distribution, n,, is the number of nodes in group
m, and nltn = Zij A0 2, 5,,L,zj/2‘$lm (and similar for n,
with A;; replaced by (1— A;;)) denotes the number of links
and non-links between group ! and m. We use the notation
B = Bt+B" and nym = n) +n; . Based on this, z can be
inferred by MCMC. We use Gibbs sampling in combination
with split-merge moves similar to [].

A. Quantifying graph similarity by the IRM

To compare the similarity of graphs based on the IRM, the
estimated group structure can be compared directly, or by
exploiting that the IRM model is a generative model, a model
fitted on one graph can be used to predict other graphs.
We compare the following three measures to assess similar-
ity between graphs: normalized mutual information (NMI)
between the inferred clustering structure of the graphs, the
predictive log-likelihood, and the area under curve (AUC) of
the receiver operator characteristic. These three approaches
are described below.

1) Normalized Mutual Information (NMI): The NMI be-
tween two group structures z and z* is given by

21(z, z*%)
I(z,2) +1(z*, 2%)’
where I(-, ) is the mutual information defined by I(z, z*) =

Hl,m p(l’ m) IOg ( (l()l”r(ri’{)

that a node in cluster [ in z is in cluster m in z*. For I(z, 2)

NMI(z, z*) =

) and p(l,m) is the probability

(b) Decrease in NMI
NMI between grouping

this reduces to the entropy H(z) = — 3, p(m)logp(m).
An important property of mutual information is that it is
invariant to permutation of the extracted groups. NMI is
bounded by [0,1] where O indicates that the two group
assignments are independent whereas 1 indicates the two
groupings are identical up to permutation [13].

2) Predictive log-likelihood: To quantify how similar the
structure of links are in two graphs we can evaluate how well
the IRM inferred on graph A predicts the graph A*. The
expected predictive log-likelihood for a given group structure
z is given by

(log p(A™|2z, A, 8%, B, ))p(
> A5 (l0gns, 2, pmlans + (1
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(mlAz) =
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where the expectations are (log(1.,,.,)) = (nlm +87) —
Y(nim + B) and (log(l — nz,2))) = ¥(ny, + 57) —
¥(nym—+0F) and ¢ is the digamma function ¢ (z) = dl%i(z)
Averaged over the posterior samples from the MCMC run,
this can be used as a predictive similarity measure.

3) Area Under Curve (AUC): An alternative measure for
prediction is based on the extend to which the probabilities
of generating links inferred by the IRM in graph A can be
used to separate the class of links and non-links in graph
A*. The expected probability of generating a link between
node ¢ and j is given by

nt + Bt

<p(A:<J = llzaAvBJrvﬁ_va»p(’r”A,z) = i +6 .

This probability can be used as a scoring function (s(z, j))
for computing the AUC which is bounded by [0,1] where 1
corresponds to a perfect separation of the link and non-links
by the scoring function s(i,j) whereas 0.5 means that the
scoring function is no better than chance. A benefit of the
AUC is that it is invariant to class-imbalance issues. The
AUC is therefore widely used as measure of performance in
link-prediction tasks, see also [14].

B. Data and experimental setup

The human cortex connectivity dataset [7] available from
http://cmtk.org/viewer/datasets| is used. The dataset consists

- nzhzj )>p("]|A’z)
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Figure 2: Each column indicates similarity between scan Al (or A2) and the other scans according to NMI, predictive
likelihood and AUC. The green boxes indicate variability across the 10 MCMC restarts, the blue boxes how well subject
Al (or A2) generalize across the other scans and the red is a baseline given by random permutations. The red crosses are
outliers. The dots in the lower row correspond to naively predicting A* = A.

of six structural connectivity graphs obtained from trac-
tography based on diffusion spectrum imaging (DSI) from
five subjects [7]. Graph Al and A2 are obtained from
two different scans of the same subject. The graphs have
J =998 nodes and were symmetrized and binarized before
our analysis. The number of links and the graph densities
are listed in Table I The MCMC inference is initialized
at random and is run for 50000 iterations. Every 25th
sample is saved, resulting in 2000 samples. 10 MCMC
restarts are made for each graph. The priors are selected
as BT =3~ =1 and o = log(J). The number of clusters
is initialized uniformly at random between 1 and 200.

III. RESULTS

The similarity of the groupings of nodes is found by
calculating the NMI between the assignment matrices from
MCMC restart 1 and 2, 2 and 3, ..., 10 and 1. The NMI
for each subject versus itself is shown in Figure [2] as green
boxes indicating an upper bound on the similarity. Instead
of averaging NMI over the posterior distribution, we use
the single posterior sample with the highest likelihood, thus
the NMI for a graph versus itself should in theory be
equal to one. The blue boxes are the NMI for MCMC
restart 1 between subject Al (A2 in second column) and
all the other subjects—this indicates the estimated similarity

Subject  No. of links  Graph density [%]
Al 27040 271
A2 29730 2.98
B 28444 2.86
C 29 866 3.00
D 29702 2.98
E 28744 2.89

Table I: The number of links and density of the 6 graphs.

between subjects. The red boxes show NMI between Al
(A2) and a random permutation of each subject indicating a
lower bound on the similarity. The NMI within a subject is
around 0.85 corresponding to a fraction of 10% of the nodes
are permuted, as shown in Figure [Tb] The reason why the
NMI within a subject is less than 1 can be attributed to
lack of mixing of the MCMC sampler making it unable to
identify the same highest likelihood solution. This indicates
that the MCMC sampler should either be run for a much
larger number of iterations, which may be impractical, or
that more efficient inference procedures should be devised.
Nonetheless, the results gives an indication of the magnitude
of error due to lack of mixing. The NMI between subject
Al and A2 is slightly higher than NMI between any other
combinations. This indicates that the graph structure is more
similar within a subject across scans than between subjects,
but further investigations are needed to confirm the result.
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Figure 3: Boxplot of the number of groups in each of the
10 MCMC restarts per subject.
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The NMI between subjects is well above random, suggesting
a common latent structure between subjects.

The predictive log-likelihood and the AUC between sub-
ject Al (A2 in second column) and the other subjects are
found using every 25th sample of the last 25000 samples
using subject Al (A2) as training data. The predictive log-
likelihood and AUC is shown as blue boxes, the green
boxes indicate how a subject predicts its own graph, and
the red boxes show how Al (A2) predicts the other graphs
randomly permuted. For reference, the dots in the AUC plot
indicate baseline results when naively predicting that graphs
are equal. The predicted log-likelihood and AUC between
subjects is well above random, again supporting a common
latent structure; however, when training the model on subject
Al (left column), subject B has the highest predictive log-
likelihood and AUC. This might be due to differences
in graph density since Al has the lowest graph density
and graph B the second lowest density, but it also shows
that predictive performance should be used with caution to
assess graph similarity. When training the model on subject
A2 (right column), subject Al has the highest predictive
log-likelihood and AUC: Here, as expected, the predictive
performance is best within a subject.

Figure [3] shows a boxplot of the number of clusters in
each MCMC restart where the color indicates the different
subjects. Each box shows the distribution of the number
of clusters from every 25th sample of the last 25000
samples; however, most are centered on a single number
again indicating that the MCMC sampler does not mix
properly. Nevertheless, both within each subject and across
subjects the number of components is fairly consistent.

IV. CONCLUSION

We proposed a framework for comparing graphs of brain
connectivity based on the structure inferred by the infinite
relational model. We tested the framework on six benchmark
structural connectivity graphs derived from diffusion spec-
trum imaging and found that all the networks were consistent
both within and between subjects. The inferred structure
appeared to be slightly more consistent as quantified by NMI
within a subject than from this subject to the other four
subjects. However, it was observed that the inferred models
predict structural connectivity equally well within a subject

as across subjects. In particular, the structure inferred were
significantly more consistent than would be expected by
random and also more consistent than predicting on the raw
graphs. We believe the proposed framework has promising
applications for identifying structure and comparing brain
connectivity data in general.
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